
Convergent Drawing for Mutually Connected Directed
Graphs

Naoko Toedaa, Rina Nakazawaa, Takayuki Itoha, Takafumi Saitob,
Daniel Archambaultc

aOchanomizu University.
bTokyo University of Agriculture Technology.

cSwansea University.

Abstract

Directed graphs are used to represent a variety of datasets, including friend-

ship on social networking services (SNS), pathways of genes, and citations of

research papers. Graph drawing is useful in representing such datasets. At the

international conference on Information Visualisation (IV), we have presented

a convergent edge drawing and a node layout technique for tightly and mutu-

ally connected directed graphs. The edge drawing technique in the IV paper

includes three features: ordinary bundling of edges connecting pairs of node

clusters, convergence of multiple bundles that connect to the same node cluster,

and shape adjustment of two bundles connecting the same pair of node clusters.

In this paper, we present improved node layout and edge drawing techniques,

which make our edge bundling more effective. This paper also introduces a case

study with a directed paper citation graph dataset.

Keywords: Directed graph, Edge bundling, Node layout, Graph clustering.

1. Introduction

A variety of datasets in academia and industry can be represented as directed

graphs. For example, friendships on social networking services (SNS) can be

Email addresses: toeda@itolab.is.ocha.ac.jp (Naoko Toeda),
leena@itolab.is.ocha.ac.jp (Rina Nakazawa), itot@itolab.is.ocha.ac.jp
(Takayuki Itoh), txsaito@cc.tuat.ac.jp (Takafumi Saito),
d.w.archambault@swansea.ac.uk (Daniel Archambault)

Preprint submitted to Elsevier August 10, 2017

collected via Web APIs and transformed into directed graphs. Genetic pathways

are available through open databases and can be considered as directed graphs.

Paper citation networks are also directed graphs, which can be constructed from

open information in digital libraries of academic societies.

Graph drawing techniques are useful in visually representing directed graphs.

Software packages exist to visualize friendships on social networking services

or genetic pathways. From our observation, many of these software packages

feature general graph drawing algorithms, which can be applied to undirected

graphs. The development of directed graph drawing algorithms is, therefore,

still an interesting problem.

Edge bundling has been an active area of research in graph drawing for

a number of years [1] - [9]. Most of the algorithms in this area are targeted

at undirected or hierarchically clustered graphs and do not consider mutually

connected directed graphs. Most of these approaches cluster edges at their

centers, but it is also effective to bundle edges at their end points [10] - [11].

More effective techniques may be possible by effectively combining these two

methods.

At the Information Visualization conference, we presented edge drawing and

node layout techniques for tightly and mutually connected directed graphs [12].

Our approach constructs a hierarchy of nodes by recursively applying a graph

clustering algorithm. Then, it applies a layout algorithm to draw the graph.

Edges are bundled using an approach designed specifically for directed graphs,

effectively revealing connectivity between node clusters. This algorithm bun-

dles edges between pairs of clusters. Two bundles may be generated if the edges

between the clusters are in opposite directions. The algorithm then combines

multiple bundles departing from or arriving at the same cluster. Finally, it

adjusts the shape of the bundles between each pair of node clusters. Our clus-

tering and layout algorithms are designed so that our edge bundling algorithms

work effectively. The node clustering algorithm groups nodes that have many

edges connected to the same node, because this strategy bundles more edges.

The node layout algorithm calculates weights of connections between a pair of

2

node clusters according to the smaller number of edges of up to two bundles

connecting the clusters, so that tightly connected clusters are placed nearby.

This paper presents an improved layout algorithm and edge drawing tech-

nique. This technique inserts additional dummy nodes and edges into the graph

before applying a force-directed algorithm so that nodes referred to or referred

by the same node and placed closer to each other. Our edge bundling technique

has also been improved to cluster more edges, reducing visual clutter.

This paper presents a case study using a paper citation network dataset

retrieved from ACM Digital Library, and discusses the effectiveness of the pre-

sented technique.

2. Related Work

2.1. Edge Bundling

Edge bundling has been widely studied. Zhou et al. [13] survey bundling

techniques for information visualization. The purpose of edge bundling is to

improve the comprehensibility of drawing complex graphs, which cluster similar

edges together and draws them as bundles. Holten [1] presented a hierarchical

edge bundling technique, which groups edges connected nodes belonging to the

same pairs of clusters following a hierarchy. This technique is designed for

hierarchical graphs, but does not implement processes specified for mutually

connected directed graphs.

Selassie et al. [2], Holten et al. [3] presented techniques that group nearby,

directionally similar edges using a spring model. Gansner and Koren [4], Pupyrev

et al. [5] bundled edges to minimize the total ink used in the drawing. These

techniques bundle edges optimizing an ink or energy function.

There are also many bundling techniques that use a grid superimposed on

free space as a scaffold for bundling. Qu et al. [6] proposed an edge clustering

method based on Delaunay triangulation. Lambert et al. [7] uses a hybrid grid.

Luo et al. [10] uses a quadtree to guide the edge-bundling process.

3

These techniques reduce visual clutter and support the understanding of

graph structure. However, most of these techniques may create a visual ambi-

guity that causes the perception of false connections between unconnected nodes

as edges are gathered at their midpoints.

Several other techniques presented by Telea et al. [8] and Ersoy et al. [9]

compute skeletons of edge clusters and enhance the visibility of overlapping

bundles, often using image-based techniques. We would like to apply these

techniques to our implementation as future work.

2.2. Edge Convergence

In this paper, we define ”bundling” as techniques that gather edges at their

midpoints, and ”convergence” as techniques which gather edges at their end

points.

Luo et al. [10] named the problem of false connectivity caused by bundling

”edge ambiguity” and presented a technique to draw edges as curves that con-

verge at their endpoints to clearly represent connections. Bach et al. [11] pre-

sented a technique to bundle edges based on common sources or targets and gen-

erate confluent bundles indicating precise connectivity. This technique inserts

nodes for confluent edges in addition to the original nodes before calculating

the graph layout. These techniques successfully reduce clutter and ambiguity

around end points of edges. However, these techniques do not support hierar-

chical and large graphs. In contrast to these techniques, this paper presents a

directed graph visualization technique that cluster nodes, bundle edges at the

end points and avoids edge ambiguity.

Edge compression using power graph [14] can also reduce cluttering and am-

biguity around end points of edges. Power graphs group nodes hierarchically

and surround the clusters with a closed curve. If all nodes in a module connect

to the same node, a single edge connects the module to the node and can rep-

resent the relationship. Dwyer et al. [15] demonstrated that drawings that use

power graphs leads to quicker understanding than standard network drawing.

However, power graph drawing cannot cluster all of the important edges. We

4

solve this problem by supporting hierarchical graphs as input.

2.3. Node Clustering

Graph clustering is a key technique that makes graph drawing more effective

and comprehensive. There have been a large number of clustering algorithms

introduced by several survey papers [16]. Though finding densely connected

components is definitely the most popular approach for graph clustering, other

approaches are also effective if we want to maximize the number of edges to

be bundled. Itoh et al. [17] applied edge-adjacency and node-similarity based

graph clustering to make large number of edges bundled and separate key nodes

from large clusters. The technique presented in this paper also applies the same

clustering algorithm.

2.4. Other Graph Visualization Techniques

There have been many tree-like visualization techniques that operate on

directed acyclic graphs [18][19], which place nodes based on their distance from

a starting node. These techniques do not often work well for dense graphs as

tree-like graphs are expected as input and their edges are expected to flow along

common directions. Therefore, we did not apply this approach. Instead, we

applied general algorithms for graph clustering and node layout, and extended

edge bundling techniques for mutually connected directed graphs.

Incidentally, there have been many 3D graph visualization techniques [20].

These approaches are also effective if the graph is dense and large. However, 3D

visualizations are not always suitable for an overview, as they require extensive

training. Therefore, we developed a 2D graph visualization technique to provide

overview of the whole graph.

3. Presented Visualization Tool

This section presents the data structure and processing algorithms of our

technique. Our algorithm has the following steps:

5

1. Cluster nodes based on distances calculated from dissimilarity of feature

vectors and discommonality of the adjacent nodes.

2. Calculate positions of nodes by applying force-directed node layout algo-

rithm to a clustered graph treating the clusters as nodes.

3. Bundle and converge edges and draw as Bezier curves.

Our implementation calculates the positions of nodes and node clusters once

while providing a mechanism for users to adjust edge drawing interactively.

Therefore, our edge bundling and drawing algorithms need to calculate the

bundling quickly in response to user interaction. However, our clustering and

layout algorithms can be run as a preprocessing.

3.1. Data Structure

A graph G consists of a set of nodes N and edges E as follows:

G = {N,E}

N = {n1, ..., nNn}

E = {e1, ..., eNe
}

ni = {ai1, ..., aiNa}

ei = {ni, nk}

Here, ni denotes the i-th node. We suppose that a node has a multi-dimensional

attribute value, where aij denotes the value of the j-th dimension of the i-th

node. ei denotes the i-th edges, where the edge is directed from ni to nk. Nn

denotes the number of nodes. Ne denotes the number of edges. Na denotes the

number of dimensions.

3.2. Node Clustering

The technique calculates high dimensional distances between arbitrary pairs

of nodes, and then applies a clustering algorithm to construct the hierarchy of

the nodes. This section describes the definition of node distance, and processing

flow of the node clustering algorithm.

6

3.2.1. Node Distance Calculation

The technique calculates two types of distances between pairs of nodes: dis-

similarity of feature vectors dvec, and discommonality of the adjacent nodes dadj

. It defines the high dimensional distance between a pair of nodes as

d = αdvec + (1.0− α)dadj

Here, α is a user-specified value satisfying (0.0 ≤ α ≤ 1.0) .

Dissimilarity of feature vectors

The technique calculates the similarity between the two nodes as the inner

product of the feature values. We define the dissimilarity calculated from the

inner product as the distance between the two nodes dvec , by the following

equation.

dvec = 1.0− inner

inner =
ni · nj

|ni||nj |

Discommonality of adjacent nodes

We define the discommonality of adjacent nodes by the number of commonly

connected nodes. To specify the distance dadj between two nodes ni and nj , the

technique counts the number of nodes which are connected to both ni and nj .

It calculates the distance as follows.

dadj =
1.0

1 + nadj

Here, nadj is the number of nodes connected to both the nodes.

3.2.2. Hierarchical Clustering

Our implementation then constructs hierarchy of nodes based on the above

mentioned distances. Currently, we generate a two-level hierarchy of clusters by

applying an agglomerative approach that uses the furthest neighbor method.

We limit the number of levels in the hierarchy to two to simplify the user-

controlled parameters.

7

This implementation requires to adjust two user-specified thresholds α and

β (α < β) for each level of clusters. We limit the number of level of hierarchies

up to two, because we would not like to increase the number of user-adjusted

parameters. The process begins by grouping nodes while satisfying the maxi-

mum distance α. Clusters produced in this stage are called ”cluster A”. Then,

the process groups nodes while satisfying the maximum distance β. Clusters

produced in this stage are called ”cluster B”.

3.3. Node Layout

Our implementation calculates positions of nodes by the following a bottom-

up algorithm. First, it calculates the positions of level A clusters that belong

to a level B cluster. Then, it calculates the positions of level B clusters. The

second part of this algorithm is similar to the implementation presented in Itoh

and Klein [17].

3.3.1. Positions of level A clusters

1. Generate a graph treating the level A clusters as nodes. Weight the edges

according to the number of edges of the input graph connecting pairs of

clusters, so that tightly connected clusters are placed closely.

2. Apply the later mentioned algorithm (Layout for edge convergence) or

a force-directed node layout algorithm to the above mentioned graph to

calculate the positions of level A clusters.

3. Calculate the radii of circles enclosing each of level A clusters based on

number of belonging nodes.

4. Adjust distances between pairs of level A clusters closer to the sum of

radii by applying Laplacian smoothing algorithm.

5. Calculate positions of nodes belonging to the level A clusters.

Layout for edge convergence

In our previous implementation, we applied a force-directed algorithm in

the second step of our approach. However, applying a force-directed algorithm

8

Figure 1: Example of node layout. (Left) Input graph with straight line drawing. (Right)

The good layout and edge bundling for left graph. Blue and red nodes can be control points

for curve drawing.

Figure 2: Layout for edge convergence. (Left) Generating additional nodes for each nodes

referring of referred one or more nodes. (Right) Generating additional nodes for each nodes

referring of referred two or more nodes.

treats the clusters as nodes and does not allow for edge convergence. If two nodes

connected by an edge are close, their bundles can be converged. This technique

inserts additional dummy nodes and edges into the graph before applying a

force-directed algorithm so that these nodes are placed closer to each other

(Figure 1).

1. Apply a force-directed node layout algorithm.

2. Apply the following steps (Figure 2(Left)):

(a) Select a node (Nx in Figure 3).

(b) If Nx refers to one or more nodes

i. Generate a blue node (Nb).

9

ii. Generate edges connecting Nb to the nodes connected Nx (NbNy

and NbNz).

iii. Remove the edges connecting from Nx (NxNyandNxNz).

iv. Generate an edge connecting Nx to Nb.

(c) Apply the following steps if Nx is connected one or more nodes:

i. Generate a red node (Nr).

ii. Generate edges connecting the nodes connectedNa toNr (Ny′Nr

and Nz′Nr).

iii. Remove the edges connecting to Nx (Ny′Nx and Nz′Nx).

iv. Generate an edge connecting Nr to Na.

(d) Repeat the above steps to all the nodes.

(e) Apply a force-directed node layout algorithm to the above mentioned

graph.

(f) Remove red and blue nodes and edges.

(g) Generate edges.

3. Apply the similar algorithm while generating red and blue nodes for each

nodes referring of referred two or more nodes (Figure 2(Right)).

Nx

Ny

Nz

Nx

Ny

Nz

Nb

Ny'

Nz'

Ny'

Nz'

Nr

Figure 3: Algorithm to generate graph before applying a force-directed node layout algorithm.

(Left) Input graph. (Right) Output graph.

3.3.2. Positions of level B clusters

1. Generate a layout treading the level B clusters as nodes. Weight the edges

according to the number of edges of the input graph connecting pairs of

clusters, so that tightly connected clusters are placed close to each other.

10

2. Apply the above mentioned node layout algorithm for level A clusters

belonging to each of level B clusters.

3. Calculate radii of circles enclosing each of level B clusters based on the

node layout results of level A clusters.

4. Adjust distances between pairs of level B clusters closer to the sum of radii

by applying Laplacian smoothing algorithm.

5. Calculate positions of level A clusters belonging to the level B clusters.

3.4. Edge Bundling

The presented edge bundling technique aims to satisfy the three conditions

illustrated in Figure 4. First of all, our technique specifies sets of bundles to

be clustered according to Condition C and rotation direction of bidirectional

bundles. Then, it calculates the shape and thickness of the bundles, taking all

conditions into account. This section describes how bundles are selected and

how their final shapes are calculated.

Edges between

two clusters of edges

Edges of pairs bidirectional

bundles connecting to the

same pair of clusters

Edges of pairs of bundles

start or end at same cluster

A.

B.

C.

Figure 4: Conditions for edge bundling

11

Ca

Cy

Cz
Cw

Cx

Ca

Cy

Cz
Cw

Cx

Cx'

Cy'

Ca

Cy

Cz
Cw

Cx

Cx'

Cy'

Figure 5: Selection of pair of vectors for score of convergence. (Left) Pair for the first calcu-

lation. (Center) Pair for bundles connecting to Ca. (Right) Pair for bundles connecting from

Ca.

3.4.1. Convergence of Bundles

The technique groups adjacent bundles connected to the same cluster using

the following algorithm (Figure 5).

1. Select a cluster (Ca).

2. Select the next bundle connected to the cluster in clockwise order (Cy).

3. Calculate the later mentioned score (3.4.1.1) of the selected bundle and the

bundle on the left (Cx), if they have one or more similarly directed edges.

This calculation uses two vectors, CaCy and CaCx (Figure 5 (Left)).

4. If the score is larger than a user-specified threshold,

(a) Calculate the position of the gravity of the all converging clusters

(Cx′ and Cy′) if these two bundles have grouped with other bundles.

(b) Calculate the score of the two bundles connecting to Ca (CxCa and

Cy′Ca) if both of them have one or more edges connecting to Ca

(Figure 5 (Center)). Let this score Sa.

(c) Calculate the score of the two bundles connecting from Ca (CaCx′

and CaCy) if both of them have one or more edges connecting from

Ca (Figure 5 (Right)). Let this score Sb.

(d) Group the two bundles connecting to Ca if the score is larger than a

user-specified threshold and Sa > Sb.

(e) Group the two bundles connecting from Ca if the score is larger than

a user-specified threshold and Sb > Sa.

5. Repeat the above process to all the clusters.

12

Ca

Cy

Cx
Px

Py

Ca

Cy

Cx

Figure 6: Conditions for convergence of bundles. (Left) Orange part is angle between two

bundles. (Right) Orange segment is the convergable part of the two bundles.

Our implementation calculates the score of two adjacent bundles as described

in the next sections.

3.4.1.1. Score for Convergence of Bundles.

Angle between the two bundles Let us assume nodes in cluster Ca are

connected to nodes in clusters Cx and Cy, and call centers of these clusters Ca,

Cx, and Cy. Also, let us call the segments connecting two clusters CaCx and

CaCy. The technique treats the score as zero if the angle between CaCxz and

CaCy is larger than a user-specified threshold.

Length of convergable parts The technique generates the bisector of

CaCx and CaCy, and then generates perpendicular segments from centers of

two clusters (Cx and Cy) connected to the bisector. Let us call the intersections

between the bisector and perpendicular segments Px and Py. The technique

then calculates the lengths of CaPx and CaPy. We treat the smaller length as

the score (i) of CaCx and CaCy, because the distance denotes the convergable

part of the two bundles. In Figure 6, CaPy is the length of convergable parts.

3.4.2. Rotation Direction of Bidirectional Bundles

This technique specifies the rotation direction of bidirectional bundles con-

verging without bundles by the following algorithm (Figure 7).

13

Ca

Cx

B B�

'
Cy

Cz

Figure 7: Selection of rotation direction of bidirectional bundle. The technique compares α

and β.

1. Select a bundle converging without bundles. See the bundle connecting

Ca to Cx in Figure 7.

2. Calculate the angle β’ between CaCx and the bundle on the right CaCz.

If the left bundle has the reverse direction, bisect the angle β.

3. Calculate the angle α between CaCx and the bundle on the left CaCy by

the similar calculation.

4. Specify the rotation direction of the bundle in a clockwise direction if α is

larger than β. If not, specify the rotation direction in a counterclockwise

direction.

5. Repeat the above process for all the bidirectional bundles.

3.4.3. Edge Drawing

The technique categorizes the edges of the input graph into the following

three cases. Bezier curves are used to draw these cases. Edges fade from blue

(source) to red (target) to indicate their directions because arrowheads are a

poor choice for depicting directionality unless a graph is very simple [21].

Edges of bundles converged to other bundles

The technique places the control points of the Bezier curves on the bisectors

of the adjacent two bundles, as illustrated in Figure 8(Left). The position of

14

Cxy
y

Px

P1

Pa

b

P2

Pa

P3

Cab C'ab

Figure 8: Positions of control points of Bezier curves for edge bundling. (Left) For edges

of bundles converged to other bundles. (Right) For edges of pairs of bidirectional bundles

connecting to the same pair of bundles.

the control point P1 is calculated by the following equation.

P1 = Ca(1− γ) + Pxyγ

Here, γ is a user-specified value satisfying (0.0 ≤ γ ≤ 1.0) . If more than three

bundles can be converged, we specify the position of E on the line A to center

of gravity of the all clusters (B, C, …).

Edges of pairs of bidirectional bundles connecting to the same pair of clusters.

As illustrated in Figure 3(Right), the technique places the control points of

the Bezier curves on CaC
′
ab and CbC

′
ab, which is on the side of CaCb. Here,

CabC
′
ab is the bisecting perpendicular segment of another segment connecting

the centers of clusters Ca and Cb. Additionally, the angle between CaCab and

CaC
′
ab, δ, is calculated by the following equation (Figure 7):

δ = min{α, β, π
4
}

Positions of the control points P2 and P3 are calculated by the following equa-

tions:

P2 = Ca(1− γ) + C ′
abγ

P3 = Cb(1− γ) + C ′
abγ

Here, γ is a user-specified value satisfying 0.0 ≤ γ ≤ 1.0.

15

Pb

Pa

Ca'

Cb'
Pb'

Pa'

P5

P4

Pb

Pa

P5

P4

Figure 9: Positions of control points of Bezier curves for edge bundling.

Other Cases

In all other cases, the following algorithm is applied if the above-mentioned

cases are not applicable. Our implementation places two of the control points

on the segment connecting the centers of clusters, as shown in Figure 9(Left),

when we would like to tightly bundle the edges. Otherwise, it first calculates the

positions that divide the two segments (one connects two nodes, and the other

connects centers of the clusters) into three equal-sized parts. It then places the

control points on the segments connecting them. Figure 9(Right) illustrates

this process. Positions of the control points P4 and P5 are calculated by the

following equations.

if γ > 0.5 then r = (γ + 0.5)× 2

3

P4 = Car + Cb(1− r)

else r = γ × 2

P5 =
Ca × 2 + Cb

3
× r +

Pa × 2 + Pb

3
× (1− r)

Here, γ is a user-specified value satisfying (0.0 ≤ γ ≤ 1.0).

16

layout converging edges bidirected edges other edges

1. simple layout [12] 59 736 540

2. layout in Figure 2(Left) 247 674 414

3. layout in Figure 2(Right) 223 694 418

layout converging edges bidirected edges other edges

1. simple layout [12] 533 402 400

2. layout in Figure 2(Left) 699 347 289

3. layout in Figure 2(Right) 785 292 258

Table 1: Number of converging edges for each layout algorithm.

layout number of crossing pairs of edges percentage of them

1. simple layout [12] 184 1.37%

2. layout in Figure 2(Left) 200 1.49%

3. layout in Figure 2(Right) 212 1.57%

layout number of crossing pairs of edges percentage of them

1. simple layout [12] 670 2.27%

2. layout in Figure 2(Left) 668 2.26%

3. layout in Figure 2(Right) 786 2.66%

Table 2: Number and percentage of edge crossing.

17

Figure 10: User interface

3.5. User Interface

Figure 10 is a snapshot of the user interface we implemented. The right side

of the window features the drawing space while the left side features five tabs.

Users can scale and pan the view so that all nodes can be made visible (Figure

10).

Users can adjust the bundling and layout parameters. In accordance with

user operation by the sliders, our implementation regroups and redraws edges.

Users can change node clustering and layout by pressing the “replace” button

after adjusting the sliders.

We assign individual colors to each of the dimension of the feature vectors.

Node color is specified by the dimension with the largest difference in these

feature values. The implementation generates a triangular mesh connecting

the nodes and linear interpolation is used to color areas between nodes. As a

result, the background color represents the largest difference in feature values

for peripheral nodes.

18

Figure 11: Visualization result zooming in some cluster.

4. Case Study with Paper Citation Network

We applied our technique to a citation network dataset [22], consisting of

1072 full papers presented at ACM SIGGRAPH conferences. The papers were

published between 1990 - 1994 and 2000 - 2010 and were collected from the ACM

Digital Library. We extracted the title, publication year, abstract, references,

and authors from html files of the papers. This dataset consists of 1072 papers

(nodes) and 5498 references (edges). We created a 10 dimensional attribute

vector for each paper from their abstracts by applying generative topic model

LDA (Latent Dirichlet Allocation).

19

a a

a'

Figure 12: Visualization where edges are bundled based on level B clusters. (a) Overview.

(b) Zooming to the cluster a.

4.1. Count of converge part of each layout

Table 1 shows the number of converging edges for each layout algorithm

described in section 3.3.1. Our technique, which generates additional nodes

and edges during the layout process, is more effective at converging edges when

compared to our previous technique [12]. However, Table 2 shows that our

layout technique does so at the expense of edge crossings. In future work, we

would like to conduct user evaluations to determine the impact of edge crossings

on the effectiveness of our visualizations.

4.2. Example of level A clusters

Figure 12 shows a result when the bundling is based on level A clusters.

Many of the edges connected to nodes in the cluster labeled a in Figure 12 are

unexpectedly bundled. This cluster likely has several important papers related

to the topic colored blue. We checked the titles of papers in this cluster and

found many of them are related to fundamental illumination methods: light

transport, precomputed radiance transfer, and tree structures for shadow com-

putation. The papers of this cluster have mutual connections with many other

clusters because they are fundamental methods and are likely to influence other

research topics. Our visualization result highlights this important cluster clearly.

20

On average, the edge redrawing required 0.0148 seconds after changing the

bundle shape parameter and 0.031 seconds after changing the converge param-

eter. This result demonstrates that users can adjust edge drawing interactively

by adjusting the sliders.

4.3. Example of level B clusters

Figure 13 shows a visualization result where edges are bundled based on

level B clusters. In this figure, many edges connect pairs of nodes with the same

colors, meaning that very similar topics are referred. On the other hand, nodes

painted in yellow-green in the cluster b are connected to the clusters c, d, and

e, painted in blue, green, or orange. These relationships are interesting because

papers b are connected to other research topics.

Cluster b includes papers presenting automatic texture generating and re-

touching techniques. In cluster c, papers related to 3D rendering techniques

are connected to papers in cluster b because they need textures to map on 3D

models for realistic rendering. Furthermore, papers related to image processing

that belong to d and 3D modeling that belong to e, are connected to papers in

b as texture mapping is applied to complex 3D models. These citation relation-

ship indicates that the topic of b is fundamental and has been applied to many

studies.

On the other hand, it was somewhat time-consuming for us to discover the

above-mentioned relationships, as the clusters, especially d and e, contain many

different research topics. Therefore, we would like to further refine our clustering

methods and the definition of both our multi-dimensional attribute values and

node distances.

4.4. Example of edge drawing

Figure 14 shows a part of our visualization result. If only bidirectional

bundles are enabled (Figure 14(a)), the bundle connecting D to A overlaps with

the bundle connecting A to C. If only converging bundles are enabled (Figure

14(c)), the bundle connecting A to D overlaps with the bundle connecting D to

21

b

e

b

d
c

(a)

(b)

Figure 13: Visualization where edges are bundled based on level B clusters. (a) Overview.

(b) Zooming to the cluster b.

22

A

B

C

D

A

B

C

D

A

B

C

D

(a) (b) (c)

Figure 14: Visualization result zooming in some cluster.

A. However, if both are enabled, all bundles are made clear as shown in Figure

14(b).

5. Conclusion

This paper presented an edge bundling technique for directed graphs with

many mutually connected edges. This technique deforms edges based on the

following three points: 1) bundling edges connecting two nodes belonging to

same pairs of clusters as ordinary edge bundling techniques, 2) preserving proper

distances between bidirectional bundles between the same pairs of clusters, and

3) converging adjacent bundles connecting to the same cluster. This technique

is especially effective for directed graphs, which have many mutually, connected

edges. We presented a case study using a paper citation network dataset and

discussed what our technique can visualize.

In future work, we would like to improve our algorithm for inserting tempo-

rary nodes used in generating the layout. We would like to develop rotation of

node clusters [23] so that the total lengths of edges is minimized. Edge drawing

can be also improved. We would like to evaluate edge pairs to be bundled so

that we can better cluster edges.

After these improvements, further case studies with real-world directed graphs

23

would help. Also, formal user experiments would provide evidence of effective-

ness of our technique in terms of human performance.

24

References

[1] D. Holten Hierarchical Edge Bundles: Visualization of Adjacency Rela-

tions in Hierarchical Data, IEEE Trans. on Visualization and Computer

Graphics, 12(5), 741–748, 2006.

[2] D. Selassie, B. Heller, J. Heer, Divided Edge Bundling for Directional Net-

work Data, IEEE Trans. on Visualization and Computer Graphics, 17(12),

2354–2363, 2011.

[3] D. Holten, J. J. van Wijk, Force-Directed Edge Bundling for Graph Visu-

alization, Computer Graphics Forum, 28, 3, 2009.

[4] E. R. Gansner and Y. Koren, Improved circular layouts, Proceedings of

International Symposium on Graph Drawing, 386–398, 2006.

[5] S. Pupyrev, L. Nachmanson, and M. Kaufmann, Improving layered graph

layouts with edge bundling, Proceedings of International Symposium on

Graph Drawing, 329–340, 2010.

[6] H. Qu, H. Zhou, and Y. Wu, Controllable and progressive edge cluster-

ing for large networks, Proceedings of International Symposium on Graph

Drawing, 399–404, 2006.

[7] A. Lambert, R. Bourqui, and D. Auber, Winding roads: Routing edges

into bundles, Computer Graphics Forum, 29(3), 853–862, 2010.

[8] A. Telea and O. Ersoy, Image-based edge bundles: Simplified visualization

of large graphs, Computer Graphics Forum, 29(3), 843–852, 2010.

[9] O. Ersoy, C. Hurter, F. V. Paulovich, G. Cantareira, A. Telea, Skeleton-

based edge bundling for graph visualization, IEEE Trans. on Visualization

and Computer Graphics, 17(12), 2364–2373, 2011.

[10] S.-J. Luo, C.-L. Liu, B.-Y. Chen, K.-L. Ma, Ambiguity-Free Edge-Bundling

for Interactive Graph Visualization, IEEE Trans. on Visualization and

Computer Graphics, 18(5), 810–821, 2011.

25

[11] B. Bach, N. H. Riche, C. Hurter, K. Marriott, T. Dwyer, Towards Unam-

biguous Edge Bundling: Investigating Confluent Drawings for Network Vi-

sualization, IEEE Trans. on Visualization and Computer Graphics, 2016.

[12] Naoko Toeda, Rina Nakazawa, Takayuki Itoh, Takafumi Saito, Daniel W.

Archambault On Edge Bundling and Node Layout for Mutually Connected

Directed Graphs 20th International Conference on Information Visualisa-

tion (IV2016), 94-99, 2016.

[13] Hong Zhou, Panpan Xu, Xiaoru Yuan, and Huamin Qu Edge Bundling in

Information Visualization singhua Science and Technology , 18(2), 145-156,

2013.

[14] T. Dwyer, C. Mears, K. Morgan, T. Niven, K. Marriott, M. Wallace, M,

Improved Optimal and Approximate Power Graph Compression for Clearer

Visualisation of Dense Graphs, IEEE Pacific Visualization Symposium,

105–112, 2014.

[15] T. Dwyer, N. H. Riche, K. Marriott, C. Mears, Edge compression tech-

niques for visualization of dense directed graphs, IEEE Trans. on Visual-

ization and Computer Graphics, 19(12), 2596–2605, 2013.

[16] S. E. Schaeffer, Graph Clustering, Computer Science Review, 1(1), 27–64,

2007.

[17] T. Itoh, K. Klein, Key-node-Separated Graph Clustering and Layout for

Human Relationship Graph Visualization, IEEE Computer Graphics and

Applications, 35(6), 30–40, 2015.

[18] K. Sugiyama, S. Tagawa, M. Toda, Method for Visual Understanding of

Hierarchical System Structures, IEEE Trans. on Systems, Man, and Cy-

bermetics, 11(2), 109–125, 1981.

[19] T. Dwyer, Y. Koren, Dig-CoLa: Directed Graph Layout through Con-

strained Energy Minimization, IEEE Symposium on Information Visual-

ization, 65–72, 2005.

26

[20] T. Munzner, H3: Laying out large directed graphs in 3D hyperbolic space.,

IEEE Symposium on Information Visualization, 2–10, 1997.

[21] D. Holten, J. J. van Wijk, A User Study on Visualizing Directed Edges

in Graphs, Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 2299–2308, 2009.

[22] R. Nakazawa, T. Itoh, T. Saito, A Visualization of Research Papers Based

on the Topics and Citation Network, 18th International Conference on

Information Visualisation (IV2015), 283–289, 2015.

[23] D. Archambault, T. Munzner, D. Auber, TopoLayout: Multilevel Graph

Layout by Topological Features, IEEE Trans. on Visualization and Com-

puter Graphics, 13(2), 305–317, 2007.

27

