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Abstract Multidimensional data visualization is one of the most active research topics in information
visualization since various information in our daily life forms multidimensional datasets. Scatterplot
selection is an effective approach to represent essential portions of multidimensional data in a limited
display space. Various metrics for evaluating scatterplots, such as scagnostics, have been applied to scat-
terplot selection. One of the open problems of this research topic is that various scatterplots cannot be
selected if we simply apply one of the metrics. In other words, we may want to apply multiple metrics
simultaneously in a balanced manner when we want to select a variety of scatterplots. This paper presents a
new scatterplot selection technique that solves this problem. First, the technique calculates the scores of
scatterplots with multiple metrics and then constructs a graph by connecting pairs of scatterplots that have
similar scores. Next, it uses a graph coloring algorithm to assign different colors to scatterplots that have
similar scores. We can extract a set of various scatterplots by selecting them that the specific same color is
assigned. This paper introduces two case studies: the former study is with a retail transaction dataset while
the latter study is with a design optimization dataset.

Keywords Multidimensional data visualization - Scatterplot selection - Graph coloring algorithm -
Retail transaction data - Design optimization data

1 Introduction

Various information in our daily life forms Multidimensional datasets. There have been various multidi-
mensional data in science, engineering, business, and social research and industry fields. Multidimensional
data visualization is therefore one of the most important issues in information visualization. In addition to
geometric methods with explicit coordinate axes such as ScatterPlot Matrix (SPM) and Parallel Coordinate
Plots (PCP), icon-based and pixel-based methods are known as multidimensional data visualization
methods.

Dimension selection Itoh et al. (2017), Yuan et al. (2013), Zhang et al. (2012) is a hotspot for visualizing
high-dimensional data. It is unreasonable to represent every dimension in a limited display space; therefore,
it is essential to remove noisy or meaningless dimensions and focus on visualizing informative dimensions.

In multidimensional data methods using scatterplots, dimension selection is equivalent to selecting
scatterplots that are worth viewing. Automatic selection of scatterplots is therefore one of the interesting
issues in multidimensional data visualization. Scagnostics Wilkinson et al. (2005) is a set of typical metrics
applied to scatterplot selection problems Watanabe et al. (2017), Nakabayashi and Itoh (2019), Zheng et al.
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(2015). We can selectively display a set of similarly featured scatterplots by applying one of the metrics.
Meanwhile, it is not always suitable to apply a single metric for a scatterplot selection to capture all the
characteristics of multidimensional data. For instance, interesting correlations are observed from some pairs
of dimensions, while interesting clusters are observed from some other pairs of dimensions. It is bothering if
we need to switch the metrics to display various types of scatterplots. On the other hand, automatic selection
of scatterplots that have a variety of characteristics by applying multiple metrics simultaneously is a
reasonable approach to understand various characteristics of the dataset just observing a single display space
that shows the selected scatterplots.

This paper presents a fast scatterplot selection technique that automatically selects a variety of scat-
terplots applying multiple metrics. First, this technique generates scatterplots with every pair of dimensions.
Then, it calculates multiple scores based on multiple metrics for each scatterplot and forms a vector from the
scores. Next, it constructs a graph by connecting pairs of scatterplots if it determines that at least one of them
can be eliminated. Further, it assigns colors to the vertices corresponding to the scatterplots while complying
with a rule that different colors are assigned to a pair of vertices connected by an edge. In other words, the
same color is assigned to a set of significantly different scatterplots. The technique selectively displays a
constant number of scatterplots that have the same color.

Figure 1 shows an example of scatterplot selection by this technique. We currently implement four
metrics presented in Sect. 3.3: correlation, thinness, clumping, and separateness, to select a variety of
scatterplots that show various characteristics of the input dataset.

This paper is an extended version of a conference paper presented by the authors Itoh et al. (2021). The
paper additionally introduces a case study with a design optimization dataset.

2 Related work

This section introduces recent multidimensional data visualization techniques applying dimension selection
and scatterplot evaluation.

Fig. 1 An example of our multidimensional data visualization applying a variety-oriented scatterplot selection technique.
Several scatterplots show strong correlations between dimension pairs; some scatterplots clearly show clusters or outliers;
several scatterplots show how two labels drawn in red and blue are separated. The presented technique selects a variety of
scatterplots to show the various characteristics of the input multidimensional dataset in a single display space
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2.1 Dimension selection for multidimensional data visualization

Dimension selection has been one of active topics for multidimensional data visualization to effectively
represent essential subsets of dimensions. Claessen et al. (2011) visualized high-dimensional datasets by
representing a set of low-dimensional subspaces as a combination of PCPs (parallel coordinate plots) and
scatterplots. Suematsu et al. (2013) and Zheng et al. (2015) also converted high-dimensional datasets into
low-dimensional subsets and visualized these subsets using multiple PCPs or scatterplots, respectively.
These techniques did not provide rich interaction mechanisms to freely select the numbers of dimensions.

Several studies have demonstrated interaction mechanisms to freely visualize interesting low-dimen-
sional subspaces. Lee et al. (2013) and Liu et al. (2014) applied dimension reduction schemes to interac-
tively select subsets of high-dimensional data. Nohno et al. (2014) presented a technique to interactively
contract highly correlated dimensions to adjust the number of axes displayed in PCPs. Itoh et al. (2017),
Watanabe et al. (2017), and Nakabayashi et al. (2019) presented a series of techniques that easily control the
number of dimensions displayed in the PCPs or the number of dimension pairs represented by scatterplots.

It is also important to understand relationships among dimensions while extracting low-dimensional
subspaces. Dimension spaces have been visualized by applying scatterplots or graphs by several recent
studies Itoh et al. (2017), Yuan et al. (2013), Zhang et al. (2015). This is an effective approach to inter-
actively select reasonable sets of dimensions.

Despite many studies on multidimensional data visualization employing dimension selection techniques,
there have been few studies to automatically select various limited number of informative scatterplots. We
address this problem and present a new technique in this paper.

2.2 Evaluation of scatterplots

Numeric evaluation of the informativeness of scatterplots has been an active research topic. Scagnostics is a
remarkable method to quantitatively evaluate the informativeness of scatterplots. Wilkinson et al. (2005)
proposed nine features of scagnostics based on the appearance of scatterplots. Wang et al. (2020) proposed
an improved scagnostics by considering the human perception to several metrics, including ”Outlying” and
”Clumpy.” There have been several more studies that focus on specific metrics of scatterplots, including
correlation Harrison et al. (2014), Shao et al. (2017) and class separation Aupetit and Sedlmair (2016),
Sedlmair et al. (2012, Sips et al. (2009).

There have been several visualization studies on the overview and exploration of a large number of
scatterplots. Dang et al. (2014) presented an exploration mechanism for finding similarly featured scatter-
plots and filtering scagnostics. Matute et al. (2017) presented another approach to represent the distribution
of characteristics of scatterplots. The goal of our study is somewhat similar to the above studies since we
also focus on representing various scatterplots; however, our focus is different from these studies in that we
aim to selectively display the user-defined number of various scatterplots.

3 Scatterplot selection applying a graph coloring algorithm

This section presents a processing flow of the presented scatterplot selection technique. The technique
calculates the scores of scatterplots based on multiple metrics and stores it as vector values. Figure 2
illustrates the concept of scatterplot selection. Scatterplots are depicted as vectors in the metric space. The
requirements for scatterplot selection in this study are summarized as follows.

R1: Avoid selecting sets of close vectors to avoid selecting scatterplots that have similar features.
R2: Avoid selecting short vectors to avoid selecting less informative scatterplots.

The technique applies a graph coloring algorithm to satisfy the above requirements and displays various
informative scatterplots.

The technique sets R1 and R2 in order to prioritize selecting a variety of scatterplots rather than selecting
important scatterplots without missing any of them while selecting a user-specified number of scatterplots.
Therefore, even if there are multiple important scatterplots, one of them may not be selected if both of them
have similar characteristics. We compromise such unavoidable results that overlook some important scat-
terplots, especially in case a small number of scatterplots is specified.
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Fig. 2 Concept of scatterplot selection in the metric space. Blue arrows illustrate the vectors of metrics. Our technique selects
various scatterplots while satisfying R1 and R2

3.1 Data structure

This paper formalizes the problem as follows. An input multi-dimensional dataset A has » individuals as
A ={ay,ay, ...,a,}. The i-th individual a; has the m-dimensional values as a; = (a;1, s, ..., @im)- A set of
scatterplots formed from every pair of dimensions is described as S = {si,s2,...,5y}, where N is the total
number of scatterplots. Each scatterplot has a set of scores calculated based on predefined metrics. This
section describes the score of the j-th scatterplot as s; = (sj1, 52, .., Sjur), Where M is the number of metrics.
Here, the IDs of the scatterplots in S are simply determined by the IDs of the two variables that the
scatterplots have. We would like to reconsider on how to determine the IDs of the scatterplots since it affects
the search order in the breadth-first search described below.

3.2 Graph coloring algorithm

This technique applies a graph coloring algorithm to select various scatterplots with different characteristics.
Suppose a graph G = (S, E), where S is a set of vertices corresponding to the scatterplots, and E is a set of
edges connecting pairs of scatterplots. Here, we select a pair of distant and long vectors, as shown in Fig. 2.
In other words, we would like to select a pair of the i-th and j-th vectors if the area of the triangle dj;
constructed by these vectors is large. Here, the technique constructs the graph by generating edges between
the i-th and j-th scatterplots if the area of the triangle d;; is smaller than the predefined threshold dy ;.
Remark that we suppose all scores are zero or positive and therefore no pairs of vectors forms opposite
directions.

Then, the technique assigns colors to the scatterplots while complying to a rule that different colors are
assigned to a pair of vertices connected by an edge. In other words, the same color is assigned to a set of
significantly different scatterplots. Figure 3 illustrates the process. First, the process selects the scatterplot
that has the largest |s;| and assigns the color identification ¢, = 0. Then, adjacent vertices connected by
edges are traversed in the breadth-first order. The search order for adjacent vertices is simply based on the
IDs of the scatterplots in the current implementation, but other criteria (e.g., descending order of |si|) are
worth experimenting with.

While visiting the k-th vertex, the process specifies the minimum color identification that is assigned to
none of the adjacent vertices connected with the k-th vertex and assigns it to the k-th vertex. For instance, if
color identifications 0, 1, and 3 have been assigned to the vertices adjacent to ¢, the process specifies c; as
2. The breadth-first search is repeated until color identifications are assigned to all vertices.

Finally, we select a predefined number of scatterplots to be displayed. The technique extracts a set of
scatterplots in which the same color is assigned. We calculate the sums of the length of the vectors |s;| for
each color and select the color that brings the largest sum. The extracted set of scatterplots excludes
similarly looking or less informative pairs because such pairs of scatterplots are connected and therefore
have different colors. In other words, it satisfies R1 because the extracted set comprises various differently
looking scatterplots. If the number of extracted scatterplots is larger than the user-defined number, the
technique selects the scatterplots in descending order of max; (si J-), the maximum value of the scores s;; to
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Fig. 3 Graph coloring. The process assigns different colors to the vertex pairs connected by edges. The numbers in this
figure denote the order of the breadth-first search

swm of the k-th scatterplot, to satisfy R2. Our implementation provides a user interface to interactively
specify the number of scatterplots to be displayed.
The processing flow is as follows.

—_

Initialize the vertices S and calculate the scores of the k-th scatterplot as |si|.

2. Construct the graph and generate an edge between the i-th and the j-th scatterplots if d;; is smaller than
the pre-defined threshold.

3. Select the scatterplot that has the largest |s;| as the starting vertex.

4. Traverse the connected vertices by the breadth-first search. Assign color identifications to the traversed
vertices. Repeat this traverse until the color identifications are assigned to all the vertices.

5. Collect the vertices that have the same color identification. Select the user-defined number of vertices in

the descending order of the maximum value of the scores of each scatterplot.

The problem solved using the above algorithm is similar to the maximum independent set problem. The
presented algorithm is better for our study because it prioritizes to select ”long” vectors and “distant”
vectors.

3.3 Selection of metrics

Based on the discussion with the owner of the retail transaction dataset introduced in Sect. 4, we focused on
finding the following scatterplots.

S1: Scatterplots with the variables that can contribute to the regression for predicting transaction values
from climate values.

S2: Scatterplots representing isolated clusters.

S3:  Scatterplots that separate different attributes (e.g., weekdays and weekend) of the plots.

We implemented the following four metrics to assist finding the above scatterplots.
3.3.1 Correlation

Correlation is one of the most common metrics used to determine the relationship between a pair of
dimensions. It is an effective metric used to find tightly correlated pairs of variables and find S1. Our current
implementation just calculates the score of the k-th scatterplot as follows:

Skl = |Spear(iaj>‘ (1)

where Speq(i,/) is the Spearman’s rank correlation between the i-th and j-th dimensions. A dimension pair
gets a higher score if they have a strong positive/negative correlation. Instead of applying the Spearman’s
rank correlation, recent approaches Harrison et al. (2014), Shao et al. (2017) can also be useful.
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3.3.2 Thinness

It is easier to adopt a mathematical model to a set of individuals if they form thin regions in a scatterplot.
Such scatterplots correspond to S1. We measure the thinness of the region where individuals are placed in
the scatterplot as Wilkinson et al. (2005) did. Our implementation generates a Delaunay triangular mesh T’
connecting the individuals in a scatterplot and then removes all triangles that have at least one edge that is
longer than a predefined threshold. Then, we calculate the score as follows:

Sk2 = 1 - V 4nArea(T)/Perimeter(T) (2)

where A,.,(T) is the total area of T, and P,imerer(T) is the total length of the boundary of 7.
3.3.3 Clumpy

It is remarkable if the individuals in a scatterplot are well-separated into several isolated clusters. Such
scatterplots correspond to S2. Our current implementation simply applies the metric ”Clumpy” presented by
Wilkinson et al. (2005) defined as follows:

sy = 1 — length(emaxr) /length(eming) (3)

Here, our implementation generates a Delaunay triangular mesh, as described in the previous section, and
deletes the edges longer than e,4. €mqyr 1 the longest remaining edge. Newer approaches on clumping
Wang et al. (2020) can also be applied.

3.3.4 Separateness

Suppose that one of the labels is assigned to each individual. It is remarkable if individuals that have a
particular same label are well-separated in a scatterplot. Such scatterplots correspond to S3. We measure the
separateness of a particular label by calculating the entropy of the labels. Particularly, we compute the
entropy of the labels in the scatterplot generated with the i-th and j-th dimensions as follows:

C

H(i,J) = — 373" plo = cl(aw ag) logp(on = cl(aus @) @)

k=1 c=1

where y; is the label of the k-th individual, (ay;, akj) is the position in the scatterplot of the k-th individual,
and C is the number of labels. Our implementation divides the scatterplot into L subareas and calculates the
entropy at the /-th subarea H(i,j), using the above equation, and finally calculates the score of the k-th
scatterplot as follows:

Sk4 = (Hmax - ZH(i7j)1> /Humax (5)

where H,q, is the maximum value of ) H(i,j),.
Instead applying the above-mentioned technique, other approaches Aupetit and Sedlmair (2016),
Sedlmair et al. (2012) can be also applied to determine the class separateness.

4 Case study 1: retail transaction data

This paper introduces an example of visualization by the presented technique applying a retail transaction
and climate dataset. Table 1 shows the explanatory variables (climate values) assigned to the horizontal axis
and the objective functions (retail transaction values) assigned to the vertical axis in this dataset. We
clarified how the retail transaction values can be estimated from the climate values by visualizing them. The
dataset contained the records of 457 days from May 1, 2016, to July 31, 2017, corresponding to 457 data
points in the scatterplots. We generated 35 scatterplots consisting of five horizontal axes and seven vertical
axes. The data points are drawn in red or blue; red denotes holidays, while blue denotes weekdays.
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Table 1 The explanatory variables and the objective functions

Explanatory variables (climate values)

MinTemp Minimum temperature
MaxTemp Maximum temperature
SumRain Precipitation
SumSunTime Sunshine duration
MaxWind Maximum wind speed

Objective functions (retail transaction values)

Revenue Revenue

Guestl Number of customer

Guest2 Number of visitor

Ratio Conversion rate

PerGuest Average revenue per customer
AveUnit Average price of purchased items
AveNum Average number of purchased items

4.1 Visualization result

Figure 1 shows an example of a scatterplot selection using our technique. Here, several scatterplots show
correlations between dimension pairs, some others show clusters or outliers, while several others show how
two labels drawn in red and blue are separated. This figure demonstrates that our technique successfully
selects various scatterplots to show various characteristics of the dataset.

Figures 4, 5, and 6 show top four scatterplots that achieved the highest scores on correlation, sepa-
rateness, and clumpy. The horizontal axes of scatterplots are MinTemp or MaxTemp, while the vertical axes
are PerGuest or AveUnit (Fig. 4). This implies that the average revenue or price correlates well with the
temperature. Meanwhile, the vertex axes of scatterplots in Fig. 5 are Revenue, Guestl, or Guest2. It implies
that revenue and the number of guests significantly differ between holidays and weekdays.

The scatterplot selection result shown in Fig. 1 is well-balanced because it represents various charac-
teristics of the input dataset by selecting various scores of scatterplots. Meanwhile, Fig. 7 shows examples of
scatterplots that have no higher scores with all metrics. These scatterplots do not look characteristic or
informative. The presented technique does not aggressively select such scatterplots.

By the way, Fig. 6 shows the four scatterplots with the highest clumpy scores, but unfortunately, there
are no scatterplots with clearly separated multiple clusters, instead, several scatterplots that contain distant
isolated points have been selected. This result indicates that clumpy may not be an important metric for this
particular dataset used in this study. It might have been better to adopt instead a metric that directly
evaluates the presence of outliers, for example.

4.2 Statistics of the result

Figure 8 shows the statistics of areas d;; and maximum score values max;(s;;) of the scatterplot selected/
unselected in Fig. 1. This figure demonstrates that the presented technique tends to select scatterplots that
have larger max;(s;;) values and pairs of scatterplots that have larger d;; values preferentially.

The result of scatterplot selection strongly depends on the choice of d.;. The smaller dy,,. brings a
larger number of edges and consequently a larger number of scatterplots groups corresponding to the

AveUnit , = AveUnit, N PerGuest, * PerGuest

' N . S i .
MaxTemp i = MaxTemp MinTemp

Fig. 4 Scatterplots that achieved the highest scores on correlation
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Fig. 8 Statistics of scatterplots selected/unselected in Fig. 1. Vertical axes denote the ratios of the number of corresponding
scatterplots. (Left) Statistics of areas dj;. (Right) Statistics of maximum score values max;(s;;)

number of colors in Fig. 3. Table 2 shows the numbers of edges and colors, the number of scatterplots
belonging to the selected color. The table also shows the minimum dj; and max;(s;) values among the
displayed scatterplots supposing twelve of them are displayed. The result shows that selection of similarly
looking or less informative scatterplots would be avoided when a larger number of colors are made and the
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Table 2 Trade-off between the minimum dj; and min(s;) values

ipres 0.45 0.5 0.55 0.6 0.65
Num. edges 26 49 124 228 299
Num. colors 7 9 10 14 19
Num. scatterplots 29 26 26 20 15
minimum dj; 0.5158 0.5158 0.5549 0.6115 0.6512
minimum max; (s;) 0.9289 0.9289 0.9247 0.9189 0.8935

minimum d;; value gets larger. But simultaneously, the informativeness of the selected scatterplots may be
decreased because the minimum max;(s;) values get smaller. In other words, one of the features of the
presented technique is that users can easily deal with this trade-off problem just by adjusting the dy;.s value.

5 Case study 2: design optimization data

This section introduces the second case study using a dataset of the optimization process of an aircraft wing
shape design. In this case study, the wing shape was designed with 72 explanatory variables, and 4 objective
functions were calculated by hydrodynamic simulation. This process was iterated using a multi-objective
genetic algorithm to obtain 776 Pareto solutions Sasaki et al. (2002). In other words, this optimization
process yielded 776 different design results. The designer can choose the blade shape by making a decision
among these design results.

We describe the explanatory variables as dvyy to dv7; in this section. Among these, the following six
explanatory variables are well-known to be particularly important in finding the optimal solution.

dvyg, dvor:  Span lengths of the inboard/outboard wing panels.
dvp, dvos:  Leading-edge sweep angles.
dvos, dvos:  Root-side chord lengths.

Other explanatory variables include the following:

dvpe to dvys:  Variables to define the inner surface connecting corresponding points on upper and lower

surfaces of the wing.
dvye to dvsy:  Variables to design the twist of the wing.
dvyz to dv7):  Variables to design the thickness of the wing.

The following are four objective functions applied to the optimization process.

CD,: Drag coefficient during transonic cruise.

CD;:  Drag coefficient during supersonic cruise.

Mp:  Bending moment at the wing root during supersonic cruise.
M,:  Pitching moment during supersonic cruise.

We visualized this dataset as a set of 776 points that constitute 76-dimensional real values.

By the way, in this data, each of the 776 samples does not have its own class. Instead, we attempted to
color the point clouds displayed in the scatterplot with a real variable of the k-th dimension. Specifically, we
divide the interval [miny, max;] indicated by the minimum and maximum values of the k-th real values ay; to
an of each sample into N intervals, identify to which interval each value of ay; to a,; belongs, and color the
points in the interval to which each sample belongs. The points are colored in the interval to which each
sample belongs. The above process corresponds to the conversion of the k-th real variable into N classes.
Then, the i-th and j-th real variables are assigned to the two axes of a scatterplot. The scatterplot can
represent the distribution of the three real variables, i, j, and k.

We expect that the following trends can be observed from the point cloud that constitutes the Pareto
solution by applying our technique:

— Strong correlation between two variables
— Correlation across three or more variables
— Clusters separated from other point clouds

We verified whether the above trends can be discovered from the dataset.
This section introduces the visualization results with color-coding the scatterplots by the explanatory
variable dvgs to explain the trends of the optimization dataset. Figure 9 shows the scatterplots selected by
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this technique. These scatterplots have one of the explanatory variables as the horizontal axis and one of the
objective variables as the vertical axis. The interval of the explanatory variable dvys is divided into three
parts, and one of the colors yellow, magenta, or cyan is given to the points. Among the scatterplots displayed
in Fig. 9, M, is assigned to the vertical axis of most of the scatterplots in which the three colors are well-
separated, and the three colors are separated in the vertical direction. The result suggests that the explanatory
variable dvgs has a particularly strong correlation with M,,.

The two scatterplots in the lower left corner of Fig. 9 (Fig. 10) are ones that dvyy and M}, and dvy, and
M, are assigned to the two axes, respectively. Our previous study Itoh et al. (2017) showed that the five
variables dvoo, dvos, dvos, CD,, and M, are strongly correlated, and the four variables dvg,, dvos, CD,, and
M, are also strongly correlated. Figure 10 (left) shows the strong correlation between dvyy and M, from the
distribution of the point cloud, and the correlation with dvgs from the color separation of the point cloud.
Meanwhile, Fig. 10 (right) also shows the strong correlation between dvy, and M, but the correlation with
dvps is not so strong because the colors of the point clouds are not well-separated. Furthermore, comparing
the two scatterplots in Fig. 10, we can see that the correlation between dvy, and M, is sharper than that
between dvgy and M.

Figure 11 is another two scatterplots included in Fig. 9, where dvs; and M}, dvy; and M, are assigned to
the two axes, respectively. The upper right part of the scatterplot in Fig. 11 (left) and the upper left part of
the scatterplot in Fig. 11 (right) are almost blank. This represents the coarseness in the distribution of the
Pareto solution. We expect that the optimization process can be made more efficient by analyzing the
coarseness and denseness that can be observed only when specific variables are assigned to the horizontal
axis.

On the other hand, we could not discover any outliers or clusters were in any of the scatterplots that were
clearly separated from the rest of the point cloud. In other words, the 776 Pareto solutions in this dataset are
distributed continuously in the 76-dimensional space, and therefore no fragmentations among the Pareto
solutions are found.

Fig. 9 Scatterplot selection result with color-coding by the explanatory variable dvos
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6 Conclusion and future work

This paper presented a multidimensional data visualization technique that represents various characteristics
of input datasets as a variety of scatterplots. The technique automatically selects scatterplots using a graph
coloring algorithm. The technique calculates scores based on several independent metrics for each scat-
terplot. Then, it constructs a graph by connecting vertex pairs corresponding to scatterplot pairs if these
scores are similar. The graph coloring algorithm is used for the graph, and scatterplots that have the user-
specified color are extracted. The paper introduced a case study with a design optimization dataset as well as
another case study with a retail transaction dataset presented in the authors’ conference paper Itoh et al.
(2021).

Our future studies include the following. First, we would add and modify the metrics. The metrics
presented in this paper are selected based on the requirements of the data owner of the first case study, and
therefore, other metrics may be necessary while applying other fields of datasets. In addition, there have
been various improved metrics for scagnostics. We will apply them and explore the best combination of the
metrics for this study. Then, we will test the scalability of the presented technique. Particularly, we suppose
it is necessary to test datasets with a large number of dimensions; therefore, a large number of scatterplots
can be generated. It is also important to test datasets with a large number of individuals. Finally, we would
like to conduct user evaluations to verify the satisfaction of users with the scatterplot selection results.
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