
Colorscore - Visualization and Condensation of Structure of Classical Music 
Aki Hayashi         Takayuki Itoh      Masaki Matsubara 

Ochanomizu University    Ochanomizu University     Keio University 

 

1. INTRODUCTION 
This poster presents visualization and condensation of 

musical score, "Colorscore". It supports two requirements: 
overview and arrangement, for composers, arrangers and 
players. Colorscore divides each track of the score into 
note-blocks, and then determines their roles. It then displays 
all the note-blocks in one display space to provide the 
overview, so that novice people can quickly understand the 
musical structures. Colorscore also supports vertical 
condensation which reduces the number of displayed tracks, 
and horizontal condensation which reduces the display 
space. It is useful to rearrange music to smaller bands. 

2. TECHNICAL COMPONENTS 
2.1 Analysis of musical structure 
Colorscore supports SMF (Standard MIDI file) as input data. 
It requires note information of MIDI, including pitch, 
strength, duration and timing. Colorscore reads the SMF file, 
and divides each track of the score into note-blocks. Then, 
Colorscore determines roles of note-blocks by matching 
their notes to patterns given by users. 

2.1.1 Providing the pattern to decide the role 
Colorscore requires the patterns used to determine the roles 
of the note-blocks. In this paper, "pattern" means a short set 
of notes which consist of just one track in MIDI format. 
Colorscore determines whether each block plays melodies 
or accompaniments, as a "role". As regard to melodies, 
Colorscore supposes to input basic phrases of several main 
melodies. At the same time, Colorscore supposes to input 
only typical rhythms for the accompanying phrases such as 
harmonic or bass accompaniments: it does not analyze 
transition of intervals for accompaniments. We think the 
accompaniments are often characterized by repeated rhythm 
rather than by transitions, and therefore we designed 
Colorscore to input patterns of accompaniments as rhythms. 

2.1.2 Generating the initial note-blocks 
While consuming user-given patterns, Colorscore generates 
rough note-blocks, called "initial note-blocks". Colorscore 
generates the initial note-blocks by the following procedure: 
1. Treat a track as a single block. 
2. Divide a block at a whole note rest. 
3. Repeat 2. for all blocks until all whole note rests are 

eliminated from the blocks. 
4. Repeat 2. and 3. for all tracks. 

2.1.3 Pattern-matching of the blocks with 
patterns 
Then, Colorscore matches each initial note-block to 

user-given patterns. In this step, Colorscore calculates 
distances between the patterns and each note-block, and 
chooses the pattern closest to the note-block. It determines 
that the note-block has the role which is the same as the 
chosen pattern, if the distance between the note-block and 
the pattern is smaller than the predefined threshold.  

To calculate the distance between the i-th pattern and the 
jth note-block, our implementation applies the following 
distance D(i, j): 

D(i, j) = w1DRA(i, j)+w2DMA(i, j)      (1) 
Here, w1 and w2 denote constant weights, DRA(i, j) is a 

cosine of timing which features the rhythm, and DMA(i, j) is a 
cosine of transition of the notes which features the melody. 
DRA(i, j) corresponds to the cosine of RA vectors be-tween the 
i-th pattern and the j-th note-block. Here, a RA vector is an 
n-dimensional vector denoting the timing of note-on events of 
note-blocks or patterns. DMA(i, j) corresponds to the cosine of 
MA vectors between the ith pattern and the j-th note-block. 
Here, a MA vector is a (n−1)-dimensional vector denoting the 
pitch transition of note-on events of note-blocks or patterns. 
  If the length of a note-block is longer than that of a pattern, 
Colorscore first extracts parts of the note-block, and calculates 
D(i, j) applying each part. If one of the parts matches to the 
pattern, Colorscore divides the note-blocks into two or three 
note-blocks, where one of them corresponds to the part 
matched to the pattern. Then, Colorscore applies the same 
pattern matching process to the remaining note-blocks. 
  Colorscore applies the above-mentioned process to every 
note-block of every track. Colorscore determines that a part of 
the j-th note-block matches to the i-th pattern, if the D(i, j) is 
smaller than a predefined threshold D0, where D0 is a function 
of n. On the other hand, Colorscore treats note-blocks which 
do not match to any patterns as decoration note-blocks. 

The procedure to assign roles to the note-blocks is as follows: 
1. Calculate RA and MA vectors of the i-th pattern. 
2. Calculate RA and MA vectors of the j-th note-block. 
3. Extract a part of the note-block, where the length of the 

part is equal to the i-th pattern, and then calculate D(i, j). 
4. If D(i, j) is smaller than D0: 

•Divide the j-th note-block if necessary. 
•Assign the role of the i-th pattern to the note-block. 

5. Repeat 3. and 4. for all possible parts. 
6. Repeat 2. to 5. for all note-blocks. 
7. Repeat 1. to 6. for all patterns. 

2.2 Visualization of note-blocks 
Colorscore visualizes the result of note-block generation and 



 

 

role determination. Figure 1(Left) shows the result of the 
analysis drawn on a traditional musical score, and Figure 
1(Right) shows the result of visualization by Colorscore. It 
vertically draws the tracks, and horizontally draws the blocks 
in a track. It assigns colors to the note-blocks based on their 
roles. Our implementation assigns high-saturation colors to 
melodies, and low-saturation colors to accompaniments. 

 
Figure 1: (Left) Result of note-block generation and role 

determination. (Right) Result of visualization. 

2.3 Vertical condensation 
Vertical condensation reduces the number of tracks to be 
drawn by the following two steps. The first step removes 
decoration note-blocks, then removes tracks which have no 
note-blocks to be drawn, and finally reduces the tracks by 
moving and packing remaining note-blocks. The second step 
removes more note-blocks so that only the note-blocks 
especially similar to the given patterns remain in the 
visualization results. Colorscore remains only note-blocks 
whose D(i, j) values are smaller than a threshold D1 (D1 < D0). 
Consequently, the second step eliminates harmonic melodies, 
and remains main themes. Again, this step reduces the tracks 
by moving and packing remaining note-blocks. The above 
process is repeated until the tracks are reduced to the 
user-specified number. This functionality is especially useful 
while arranging orchestra or other large-scale music into 
smaller organization such as piano solo or chamber ensemble. 
2.4 Horizontal condensation 
Colorscore saves the display spaces based on change of roles 
by horizontal condensation. It shrinks bars if no note-blocks 
end or change their roles, while it keeps other bars longer. It 
shrinks bars if no note-blocks change their roles at that time. 
On the other hand, it keeps bars longer if new note-blocks start 
at that time. 
3. RESULT 

Figure 2 shows an example of visualization result of whole 
MIDI data which contains 16 tracks. Colorscore represents the 
musical structure in a single display space. Many traditional 
classical musical works have two themes, and forms musical 
structures while repeating and varying the two themes. Also, 
they may contain several additional melodies delivered from 

the themes. Considering such composition techniques, we 
prepared five melody patterns, and typical Waltz patterns for 
harmonic and bass accompaniments. 

 

Figure 2: ”Valse des fleurs” by Tchaikovsky 
Figure 3(Left) shows a part of the visualization result shown 

in Figure 8, corresponding to 314 to 328 bars. Figure 3(Right) 
shows a result of the second step of vertical condensation. It 
reduces the number of tracks from 16 to 9, and note-blocks 
from 26 to 9. Figure 3(Left) shows that two melodies drawn in 
green and purple are played at the same time. We can see such 
orchestration techniques especially in the end (Coda) of the 
music. In this case, one of the melodies drawn in green is a 
leading melody, and the other drawn in purple is a variation 
and refrain of a previously played melody. The vertical 
condensation remained the leading melody, while removing 
the refrain melody. This functionality is useful to arrange the 
music to smaller number of players. 

 
Figure 3: Vertical condensation. 

Figure 4(Upper) shows a part of the visualization result in 
Figure 2, corresponding to 211 to 250 bars. Figure 4(Lower) 
shows a result of horizontal condensation. It reduces the width 
of the visualization space as approximately 60% of the 
original width. However, it does not shrink the timings when 
roles of note-blocks change: for example, it keeps the length 
of short note-blocks surrounded by circles (A) and (B) after 
the horizontal condensation, indicated as (A’) and (B’) in 
Figure 4(Lower). 

 
Figure 4: Horizontal condensation. 


