
Druggability Analysis and Prediction based on Geometric Distances Between Amino
Acid Residues and Protein Surface Pockets

Makiko Miyoshi, Ayaka Kaneko, Takayuki Itoh

Ochanomizu University
Tokyo, Japan

Email: {iqams, ayaka, itot} @itolab.is.ocha.ac.jp

Kei Yura

Ochanomizu University
Tokyo, Japan

Email: yura.kei@ocha.ac.jp

Masahiro Takatsuka

The University of Sydney
Sydney, Australia

Email: masa.takatsuka@icloud.com

Abstract—Protein is the major component of the organism.
A concave (pocket) on a protein surface is known to be the
best target for a drug to react. We previously presented a
study on distance analysis between pockets and amino acid
residue. We firstly identified pockets on the protein surface
and then calculated distances between atoms of an amino acid
residue and the deepest points or the outer loops of the pockets.
We extracted proteins which at least one of the pockets are
close to arbitrary pairs of amino acid residues, calculated the
ratios of druggable proteins, and visualized the distribution
of the ratios as a colored matrix. We suggested from the
visualization results that particular pairs of amino acid residues
may affect the druggability of the proteins in our previous
study. This paper presents an extension of our study to explore
the relevance between druggability of proteins and distances
between a set of amino acid residues and protein surface
pockets. Our technique treats the pockets as 20-dimensional
vectors consisting of distances to each of amino acid residues,
and applies GeodesicSOM with the set of the vectors. Spherical
maps generated by GeodesicSOM are used to visualization
of distribution of the pockets in the 20-dimensional vector
space, and estimation of druggability of proteins with the 20-
dimensional vectors of the pockets.

Keywords-Protein, Druggability, Visualization, Self-
Organizing Map.

I. INTRODUCTION

Protein is the major component of the organism. It has a

unique typical three-dimensional structure determined by its

amino acid sequence. A concave (pocket) on the surface of

a protein is known to be the best target for a drug to react.

Reactivity between proteins and drug compounds is often

called “druggability”, and proteins that have relatively higher

reactivity with the drug compounds are called “druggable

proteins”.

pocket discovery has been an important topic for pro-

tein druggability analysis. Many techniques have been pre-

sented, as surveyed in [5], and they are roughly categorized

into geometry- and energy-based techniques. Energy-based

techniques have been more major in the early stage of

this field; however, many geometry-based techniques have

been presented in these several years. Kawabata et al. [2]

presented a technique which discovers concave portions

of protein surfaces by rolling two sizes of spheres on

them: this approach is good at intuitive parameter setting,

while it may require large computation time. Halgren [1]

presented another effective technique which generates grid

points surrounding proteins and discovers pockets from the

distribution of exterior grid-points. It is easy to implement,

while pocket detection results may depend on the direction

of the grid-points. We proposed a technique for pocket

extraction from protein surfaces [4], which requires less

computation time than existing techniques. This technique

just extracts well-sized concave portions of the protein

surfaces; however, the extracted pockets are not necessarily

druggable.

On the other hand, small molecules including drug com-

pounds tend to combine certain amino acid residues [7].

They found preferred amino acid residues than other amino

acid residues at interaction site. We supposed this knowledge

may be a powerful hint to analyze the druggability of

proteins, and have been studying distances between pockets

and amino acid residues can be fruitful information to

diagnose druggability.

We presented a visualization technique to discover the

relationship between druggability of proteins and distances

between amino acid residues and protein surface pockets

[3]. The technique firstly extracts pockets from a set of

input protein surfaces, and then calculates the geometric

features of the pockets, including distances between amino

acid residues and the extracted pockets. We developed three

types of visualization components to represent the results.

One of the visualization components, matrices to summarize

the druggability analysis applied to all the possible pairs

of amino acid types, were especially interesting in our ex-

periment. The visualization results suggested that particular

pairs of amino acid residues might affect the druggability of

proteins, since the red columns depicting high druggability

concentrated at a particular portion of the matrix, as shown

in Figure 1.

There are 20 different amino acids most commonly exist

in nature 1, and most of proteins contain these 20 amino

acids. However, our above study just demonstrated the

1http://www.proteinstructures.com/Structure/Structure/amino-acids.html
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Figure 1. Representation of the druggability analysis in a lower triangular
matrix [3]. Both horizontal and vertical axes denote types of amino
acid residue lined in the same order. Colors of the columns denote the
druggability of pockets close to a pair of amino acid residues. Redness
denotes the high druggability, blueness denotes the low druggability, and
saturation denotes the number of corresponding pockets.

relationship between druggability and distances to one or

two amino acid residues from the pockets. Our next interest

is how distances to three or more amino acid residues

are related to druggability of proteins. To address this

interest, we treated the distances from a pocket to each of

amino acid residues as a 20-dimensional vector, and applied

GeodesicSOM [6] to a set of vectors corresponding to a set

of pockets. We can visualize the distribution of pockets in the

20-dimensional vector space by displaying a spherical map

generated by GeodesicSOM, and observe how druggable or

undruggable pockets form clusters in the vector space. Also,

we developed a technique to estimate the druggability of

proteins by calculating the distances from their pockets to

their amino acid residues and compare with the spherical

map of GeodesicSOM. This paper introduces the processing

flow of our technique and experimental results with the

dataset of 60 proteins published by Halgren [1].

II. PROCESSING FLOW

This section describes the processing flow of the presented

technique. The technique firstly extracts pockets from pro-

tein surfaces, and calculates distances between the bottom

of the pockets and amino acid residues of the protein.

A. Pocket extraction

Our implementation extracts pockets from the protein

surface datasets by applying a quick extraction technique

[4]. This technique goes through the following procedures,

and extracts pockets from protein surfaces.

1) Apply a mesh simplification technique using an im-

plicit surface to get rough geometry by smoothing

small bumps, and consequently only larger geometric

features remain.

2) Extract peptide sizes of the concave portions on the

simplified triangular mesh.

3) Project the concave portions extracted from the simpli-

fied triangular mesh onto the original triangular mesh

as pocket candidates.

4) Remove the unnecessary parts of the projected pocket

candidates.

Our implementation applies protein surface datasets

downloaded from the protein surface database “eF-site” [8].

B. Distance calculation

We calculate the distance between a pocket and an amino

acid residue as follows. The technique firstly specifies the

plane that minimizes the sum of distances from vertices of

the outer loop of a pocket. It then calculates the distance

from vertices of the pocket to the plane, and identifies the

deepest point of the pocket as the vertex which has the

largest distance value. In this study we define the distance

as the smallest distance between the deepest point of the

pocket and the atoms belonging to the amino acid residue.

C. Druggability estimation and visualization

Our previous study [3] visualized the statistics of distances

between a pocket and one or two amino acid residues, and

explored the relationships between druggability of proteins

and the statistics of distances. Meanwhile, we may need to

analyze the relationships between the druggability and dis-

tances of three or more amino acid residues to the pockets, to

discover further new knowledge. We extended the previous

study by treating a pocket as a 20-dimensional real value

vector with a categorical value, pi = {di1, di2, ..., di20, bi}.
Here, pi is the i-th pocket, and dij is the distance from

the i-th pocket to the j-th amino acid residue. bi is a

categorical value indicating the druggability of the belonging

protein, which takes “druggable”, “difficult”, “undruggable”,

or “unknown”.

We applied GeodesicSOM [6] to the set of pockets of

protein surfaces. GeodesicSOM is a kind of spherical SOM

(Self-Organizing Map), where SOM is a unsupervised neural

network which learns the characteristics of a set of multi-

dimensional vectors and non-linearly maps the input data

onto low-dimensional spaces. Our challenge in this study

includes the following two issues:

• Visualization of pockets divided according to the dis-

tance values and druggability.

• Estimation of druggability of proteins from the set of

pockets those druggability are already known.

We firstly divided the pockets into two groups P1 =
{p1, ..., pn1} and P2 = {pn1+1, ..., pn1+n2}, Here, P1 is

a set of pockets those druggability is known (“druggable”,

“difficult” or “undruggable”), treated as a training dataset.

Meanwhile, P2 is another set of pockets those druggability

is “unknown”, treated as a test dataset. Numbers of pockets

in P1 and P2 are n1 and n2 respectively.

Our study supposes to input P1 to GeodesicSOM and

calculates the positions of the pockets on a spherical map.
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We can use this map to visualize how druggable (or un-

druggable) pockets are clustered according to the distances

to amino acid residues. Also, we apply this map to estimate

druggability of the test datasets by the following procedure.

To estimate the druggability of a pocket pk in P2, our

druggability estimation technique firstly calculates distances

between pk and any of the pockets belonging to P1, and

specifies the pocket pj in P1 which is the closest to pk. Here,

the distance is calculated as an Euclidian distance between

the 20-dimensional vectors defined as follows:

distjk =

√√√√ 20∑
i=1

(dji − dki)2 (1)

The technique determines that the druggability of pk is

unpredictable when the distance between pk and pj exceeds

the user-defined threshold distmax. Otherwise, we apply

the following procedure.

This section calls the neuron of GeodesicSOM which pj
belongs as “winner neuron”. Figure 2 illustrates an example

structure around the winner neuron corresponding to a dot

painted in orange. We suppose some of adjacent neurons

painted in blue in this figure are associated with other

pockets, and the others are not associated with any pockets.

Characters “d”, “f”, and “u” in this figure denote druggabil-

ity of the associated pockets, “druggable”, “difficult”, and

“undruggable” respectively.

Figure 2. Illustration of the winner neuron (painted in orange) and
adjacent neurons (painted in blue). Characters denote druggability of
pockets associated to some of the adjacent neurons.

The technique then calculates the distances between pk
and pockets associated to the adjacent neurons by applying

the equation (1). It extracts the pockets those distances are

smaller than distmax, and divides them to the following

three groups:

Pad: group of “druggable” pockets.

Paf : group of “difficult” pockets.

Pau: group of “undruggable” pockets.

We define the possibility of druggability by the following

equations:

psbdk =
∑
i∈Pad

1

distki

psbfk =
∑

i∈Paf

1

distki

psbuk =
∑

i∈Pau

1

distki
(2)

where psbdk, psbfk, and psbuk are possibilities of “drug-

gable”, “difficult” and “undruggable” respectively. We sim-

ply estimate the druggability of the pocket pk as “druggable”

if psbdk is the maximum. Similarly, we determine as “dif-

ficult” if psbfk is the maximum, or “undruggable” if psbuk

is the maximum.

III. EXPERIMENT

We tested our technique with a set of 60 proteins of

which druggability was examined by Halgren [1]. Chemical

structures of all the 60 proteins are published by PDB

(Protein DataBank), and geometry of their surfaces are

published by eF-site.

Protein datasets in PDB format often contain records of

”HETATM” which describe the coordinates of non-protein

atoms/molecules in protein crystal. These atoms/molecules

except for water molecules tend to bind with specificity to

the protein. Therefore when a molecule is found in a pocket,

the pocket has specificity to a certain molecule and we

name the pocket “reactive”. A pocket without a molecule is

hence named “non-reactive”. In the experiment, we extracted

pockets [4] on the surfaces of the 60 proteins, searched for

non-protein atoms/molecules around the extracted pockets,

and finally extracted the reactive pockets as the input dataset.

We applied all the pockets in the input dataset to

GeodesicSOM. Figure 3 shows a visualization example.

Characters denote druggability of pockets and their positions

on the GeodesicSOM, where black or gray are randomly

assigned to the characters just to improve the readability.

There were just a small number of pockets of “difficult” or

“undruggable” proteins in this dataset, indicated as “f” or

“u” in the visualization result, since reactive pockets often

make proteins “druggable”. Colors depict geodesic distances

among adjacent neurons. Regions painted in cold colors

depict that input vectors of adjacent pockets inside these

regions are actually similar.

This visualization result shows that the pockets form sev-

eral clusters corresponding to regions painted in cold colors

according to the vectors of distances to amino acid residues.

It suggests that clustering according to these distance vectors

may bring knowledge regarding the protein druggability.

Also, the result shows that undruggable pockets form several

small clusters as indicated by pink circles in Figure 3. These

clusters may suggest the characteristics of reactive pockets

which cannot make the proteins “druggable”.
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Figure 3. Reactive pockets mapped to GeodesicSOM. Pink circles indicate
that pockets of “undruggable” proteins form several small clusters on
GeodesicSOM.

We also tested our druggability estimation technique.

We randomly divided 60% of the pockets to P1 (training

dataset), and the rest to P2 (test dataset). Here, P2 consisted

of 474 pockets, including 391 pockets of “druggable” pro-

teins, 35 pockets of “difficult” proteins, and 48 pockets of

“undruggable” pockets.

In many use cases, we would like to divide “druggable”

proteins and others, or “undruggable” proteins and others.

Therefore, we aggregated the estimation results for pockets

estimated as “druggable” or “undruggable” respectively, as

shown in Tables I and II. Precision and recall for extraction

of pockets of “druggable” proteins were 0.869 and 0.969,

respectively. Meanwhile, for extraction of pockets of “un-

druggable” proteins, precision and recall were 0.250 and

0.571. We archived good precision and recall for extraction

of “druggable” proteins. On the other hand, result for

“undruggable” proteins was poor. We suppose that one of

the reasons for the poor result was that number of pockets

of “undruggable” pockets was too small. We would like to

find larger datasets and test this technique again.

Table I
STATISTICS FOR POCKETS ESTIMATED AS “DRUGGABLE”.

Known as Known as
“druggable” others total

Estimated as “druggable” 379 57 436
Estimated as others 12 26 38

Total 391 83 474

Table II
STATISTICS FOR POCKETS ESTIMATED AS “UNDRUGGABLE”.

Known as Known as
“undruggable” others total

Estimated as “undruggable” 12 9 21
Estimated as others 36 417 453

Total 48 426 474

We had the same experiment five times: random division

of pockets into P1 and P2, generation of spherical maps

with P1, and estimation of druggability of pockets in P2.

Precision and recall were almost similar through the five

results.

IV. CONCLUSION

This paper presented a technique for visualization and

estimation of protein druggability applying GeodesicSOM.

The technique treats pockets of protein surfaces as 20-

dimensional vectors consisting of distances to each of amino

acid residues. Spherical maps generated by GeodesicSOM

can be used for visualization of distribution of pockets

in the 20-dimensional vector space, and for estimation of

druggability of new proteins.

We had an experiment with the technique applying 60

proteins introduced by Halgren [1]. We could visualize clus-

ters of “druggable” or “undruggable” pockets in the vector

space; however, we have not yet discussed the reasoning of

the clusters. We would like to analyze and discuss how the

clusters formed as future work. We also tested the estimation

of druggability of proteins We could archive a good result

for extraction of “druggable” proteins; however, the result

for extraction of “undruggable” proteins was poor. We need

to look for larger datasets to archive more reliable results.
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