
Optimization of Hierarchical Graph Layout with a
Genetic Algorithm and Sprawl/Clutter Metrics

Ayana Murakami
Ochanomizu University

Tokyo, Japan

murakami.ayana@is.ocha.ac.jp

Takayuki Itoh
Ochanomizu University

Tokyo, Japan

itot@is.ocha.ac.jp

Abstract—Graph layouts are useful for visualizing relation-
ships between data entities. Nodes represent each entity, and
edges represent the relationships between the nodes. Hierarchical
graph visualization is known as an efficient method to represent
the overview of large-scale graphs, where some clusters are
generated depending on node properties and are drawn as a
set of multiple nodes (meta-nodes). However, it is often difficult
to determine the layouts of nodes and edges of large-scale
graphs, including hierarchical graphs. Although many graph
layout methods have been proposed so far, the quality of the
layouts by many of such methods including force-directed layout
methods strongly depends on the initial positions of the layouts.
Therefore, it is often a difficult task to obtain desired layouts.

This paper presents a layout optimization method for hier-
archical graphs using a genetic algorithm. Specific metrics for
hierarchical graph layouts are used to evaluate the generated
layout. This method makes users easy to select a favorite layout
from several layouts which are optimized based on the evaluation
results. First, hierarchical graph layouts are generated by apply-
ing an existing method multiple times. Then, they are optimized
using a genetic algorithm. Users can select their favorite layouts
from several optimized layouts. Consequently, this method does
not require adjusting initial positions of the layouts to obtain
good layouts. The paper also introduces examples using human
relationship graph datasets, including a co-authorship dataset.

Index Terms—graph layout, hierarchical graph, optimization

I. INTRODUCTION

Graphs represent data elements as nodes and their relation-

ships as edges. In recent years, graph visualization methods

have been used in a variety of fields. The readability of a

graph depends greatly on the layout of its nodes. In particular,

hierarchical graphs consisting of multiple sets of nodes (meta-

nodes) are known as an effective way to visualize the overview

of large graphs. However, generating a highly readable layout

is extremely difficult due to the complexity of connection

relations and the need to consider meta-information.

Many methods have been studied for generating graph

layouts, including methods that apply force-directed models

and dimensionality reduction techniques. Here, each of these

methods has its own strong characteristics, and it is not always

possible to achieve a flexible layout. In contrast, graph layout

methods based on deep learning have been actively discussed

in recent years. As an example, graph layout generation

methods that treat graphs as sequences and use LSTM (Long

Short Term Memory) and RNN (Recurrent Neural Network) as

learning models have been presented. However, these studies

have yet to generate layouts for hierarchical graphs, and taking

much time to train large-scale graphs remains a significant

challenge.

Graph layout evaluation is another issue that has been

discussed for a long time, and many studies have been

published on both numerical and aesthetic evaluation. In

particular, numerical evaluation metrics that focus on graph

structure based on graph theory, rather than graph visualization

results, have been discussed a lot. However, most of them

are for non-hierarchical graphs. There are very few studies

on evaluation methods specialized for visualization results

of hierarchical graphs. In contrast, Liu et al. [6] proposed

Sprawlter, a new numerical evaluation criterion specialized for

hierarchical graphs. Remark that they used Sprawlter metric

only for evaluating the layout results of hierarchical graphs,

not for optimizing layouts.

In this paper, we propose a method of hierarchical graph

layout optimization using mathematical optimization tech-

niques to solve the above problems. This method first applies

existing hierarchical graph layout methods to the given dataset

to generate several different layouts, and then executes the

optimization process with these layouts as initial layouts. The

Sprawl and Clutter metrics are applied as objective functions

of the optimization. Since there are two objective functions, the

problem is treated as a multi-objective optimization problem.

We adopt a genetic algorithm (GA) to optimize the layout.

The advantages of GA are that they can search a wide solution

space and are unlikely to fall into local solutions.

In this paper, we apply GA to obtain a set of optimized

hierarchical graph layouts, and then visualize the evaluation

results of each layout in a scatterplot. This scatterplot not only

produces a layout with a moderately high evaluation, but also

allows the user to select a favorite layout depending on the

user’s visualization purpose and preferences.

II. RELATED WORK

A. Graph Layout

Graph layout is actively discussed as a technique for vi-

sualization that represents the relationship of nodes by their

edges. In particular, a graph in which multiple nodes with

tight connections or similar attributes form a cluster is called

a hierarchical graph. There have been many hierarchical graph

layout methods. As an example, the method presented by Itoh

166

2023 27th International Conference Information Visualisation (IV)

2375-0138/23/$31.00 ©2023 IEEE
DOI 10.1109/IV60283.2023.00037

et al. [5] performs clustering according to the attributes of each

node so that nodes belonging to the same cluster are placed

close to each other. Fig. 1 shows an example of a graph layout

by this method, where nodes belonging to the same meta-node

are drawn in the same color.

Fig. 1: An exapmle of graph layout drawn by Koala algorithm [5].

B. Evaluation of Graph Layout

Evaluation of graph layout is an important issue and has

been actively discussed in recent years. There have been two

main perspectives of graph layout evaluation metrics: first,

metrics based on the connectivity of the graph, and second,

metrics related to the aesthetics of the layout. Purchase [7] has

selected five items related to edge crossing and graph layout

symmetry as examples of metrics that can lead to improved

readability. After comparative experiments, they concluded

that the number of intersecting edges (Crosses) had the greatest

impact on aesthetics among the five items.

Here, different visualization objectives require different in-

dicators to evaluate the graph layout. For example, Ware et al.

[10] analyzed the important indicators for the task of finding

the shortest path in a graph and concluded that indicators of

graph continuity had the greatest impact on the task. From

the above, multiple types of metrics should be simultaneously

considered for graph layout. Moreover, the important metrics

also differ depending on the target of visualization.

These metrics are basically for non-hierarchical graphs; in

other words, there are few metrics for evaluating graph layouts

specific to hierarchical graphs. To address this issue, Liu et

al. [6] proposed Sprawlter, a numerical evaluation metric for

layout appearance, which consists of two metrics: Sprawl,

which evaluates space waste, and Clutter, which evaluates

cluttering among nodes and edges.

Conventional graph layout methods require adjustments of

multiple parameters to achieve better layouts. There are mul-

tiple evaluation functions; in other words, there is no absolute

single important indicator. In addition, there is often a trade-off

relationship between such evaluation indices. In addition, there

is no single best layout for a graph; in other words, there are

many “good” layouts of a certain level among countless graph

layouts created by adjusting parameters. This graph layout

problem is one of the multi-objective optimization problems

in a multimodal solution space [9]. There have been various

methods for solving multi-objective optimization problems,

and each method has both advantages and challenges. In this

paper, we adopt mathematical optimization methods.

C. Optimization method and Graph layout

It is very important to select the appropriate algorithm

according to the feature of the optimization problems. The

feature of graph layout problems is that they have a lot of

local-optimal solutions in a high-dimensional solution space.

Many algorithms for multi-objective optimization problems

have been studied, and there are many papers comparing these

algorithms. There are two major solutions: One of the solutions

is to transform multiple objective functions into a single objec-

tive function by weighting them, and then finding their optimal

solution. The other is to search for a set of solutions that

optimize each of the multiple objective functions. According

to Gunantara et al. [3], the latter method is more efficient in

a high-dimensional solution space.

In multi-objective optimization problems, each objective

function is often in a trade-off relationship, and therefore, there

are multiple local-optimal solutions usually. Pareto solutions,

a set of solutions that outperforms other solutions, are often

searched for as candidate solutions of the multi-objective

optimization problem [4]. As an example, Fig. 2 illustrates

the search for a nondominated solution to the problem of

minimizing two objective functions f1 and f2. The set of

superior solutions indicated by the red dots is called the Pareto

solution. The curve drawn by the Pareto solutions is called the

Pareto Front.

Fig. 2: Pareto Front in 2-dimentional search space. We suppose that
the smaller values of both axises are, the better the solution
is.

In this paper, we adopt GA [2] as a method for obtaining

Pareto solutions. GA simultaneously evaluates and selects an

arbitrary number of candidate solutions. Therefore, it can

167

efficiently search for solutions in a wide and high-dimensional

solution space.

The Nondominated Sorting Genetic Algorithm (NSGA)

proposed by Srinivas et al. [8] is one of GA and has been ap-

plied to many optimization problems. Deb et al. [1] proposed

NSGA-II, which improves the computational complexity of

NSGA. It introduces elite selection as a method for selecting

the next generation of genes, so we can search for diverse

solutions faster than NSGA.

III. OPTIMIZATION OF GRAPH LAYOUT

This section presents our method for the optimization of the

layout of hierarchical graphs. In our proposed method, first of

all, multiple layouts of a hierarchical graph are generated by

iterating a layout algorithm [5]. The algorithm is called Koala,

in the following description, Koala means the algorithm to

draw a hierarchical graph layout. Graph Layouts generated by

force-directed graph drawing model, such as Koala, is influ-

enced by initial position of nodes. The better initial position is,

the better graph layout is generated. Therefore, in this paper,

we optimize graph layouts by optimizing initial position of

meta-nodes. We adopt NSGA-II in order to optimize them.

In an optimizing process, Sprawl and Clutter metrics evaluate

the hierarchical graph layouts respectively. Finally, an arbitrary

layout of the hierarchical graph layout is selected from the

Pareto solutions.

Fig. 3 shows the processing steps of this method. Each

process is described in detail in the following sections.

Fig. 3: Processing procedure of GA.

A. Hierarchical Graph Layout Drawn by Koala

In our implementation, hierarchical graph layouts are gen-

erated with Koala algorithm [5]. In the algorithm, important

nodes which have connections to multiple large clusters are

separated, and clusters are placed based on the distance. This

improves the visibility of connections of such important nodes.

This clusters of nodes is called mata-nodes. In this process,

initial position of each nodes are determined romdomly. There-

fore, a layout generated by Koala is differenct each time. By

executing Koala algorithm several times, several hierarchical

graph layouts are generated.

The cohesiveness of a meta-node is determined by a pa-

rameter. Fig. 4 shows examples of hierarchical graph layouts

drawn with different degrees of aggregation. Considering the

visibility of the meta-nodes, we adopt the cohesiveness shown

in Fig. 4b.

B. Optimization by a Genetic Algorithm

We can get a variety of layouts by adjusting the initial

positions of meta-nodes. A set of graph layouts is generated

by iteratively executing the method. The set of layouts is opti-

mized by NSGA-II. We call this set of layouts a generation. In

optimizing process, each layouts in a generation is evaluated

with Clutter and Sprawl metrics respectively. These metrics

of Sprawlter [6] are used as the objective functions of the

optimization process.

GA works with a population of individuals. In this case,

an individual is represented by a graph layout, and its chro-

mosome is represented by x-y coordinates of meta-nodes

consisting of the graph layout.

IV. EXPERIMENT

A. Dataset

We visualize a paper co-authorship dataset where the papers

are published at the NERC Biomolecular Analysis Facility

(NBAF) from 1998 to 2013. Here, authors correspond to nodes

while co-authorships are represented as edges. The dataset

consists of 1821 authors and 564 papers, each of the papers

has a 12-dimensional feature vector.

The final size of the dataset used in this experiment after

the preprocessing that eliminates isolated nodes is shown in

Table I.

TABLE I: Results of data preprocessing.

before preprocessing after preprocessing

Nodes 1821 1538
Edges 9692 8040

The parameters of GA used in this experiment are shown

in Table II. As mentioned above, since a chromosome has the

x-coordinate and y-coordinate of all meta-nodes of the graph

layouts, its length is equal to twice the number of meta-nodes.

In this experiment, our implementation generated 460 clusters

(meta-nodes), so the length of a gene in this experiment is

460× 2 = 920.

B. Result

Fig. 5 shows a comparison of the evaluation result of the

initial generation and each generation of the optimization

process. The scatterplot represents comparisons between the

168

(a) highly cohesive (b) moderately cohensive (c) lowly cohesive

Fig. 4: Examples of hierarchical graph layouts generated by Koala. Depends on the cohesive level parameter, aggregation degree of nodes
in a meta-node is different. The more highly cohesive nodes are, the smaller a meta-node become.

TABLE II: Parameters in this experiments．
Parametor Value

Length of Gene 920 (= 460× 2)
Population in a generation 20

Crossover Probability 0.90
Mutation Probability 0.10

initial and the first, tenth, and final generations. The hor-

izontal axis represents the Sprawl value while the vertical

axis represents the Clutter value. Each point represents a

single individual, a single hierarchical graph layout. In the

scatterplot, the cross dots represent the values of individuals

in the initial generation, and the circle dots represent the values

of individuals in the each generation. Note that the number of

the initial generation does not correspond to the counterpart of

other generations, because GA generates different individuals

from the initial generation through genetic manipulation.

In Fig. 5, the color of circle dots changes from red, green,

to blue with increasing generation. The evaluation results for

the whole generation, represented by both Clutter and Sprawl

values, show improvement. A comparison between the initial

population (blue cross dot) and the last population (blue circle

dot) reveals that the overall evaluation value of the solution

set improves with each successive generation.

Next, we display the evaluation score of each graph lay-

outs, which is corresponding to several points plotted on the

scatterplot shown in Fig. 5. Fig. 6 shows an example of the

hierarchical graph layout before the application of GA (= blue

cross dot in Fig. 5). Fig. 7 shows an example of the layout after

the application of GA (= blue circle dot in Fig. 5). Different

meta-nodes are assigned different colors. The caption number

for each figure corresponds to the number assigned to the point

in the scatterplot shown in Fig. 5.

C. Evaluation of Optimized Graph Layouts

We compare the graph layouts shown in Section IV-B before

and after the optimization, and evaluate the effectiveness of the

Fig. 5: Processing procedure of GA.

optimization.

1) Appearance Evaluation: In the hierarchical graph layout

before optimization, there are some overlappings of nodes

and edges. Overlaps of elements make worse Clutter score.

For example, in Fig. 5, focusing on the blue dots of the first

generation, graph layout no. 4 is highly evaluated among them.

However, we can see some overlapping of nodes and edges in

the graph layout shown in Fig. 6a.

Fig.8 is an enlarged view of the center part of Fig. 6a. In

the area circled by the pink ellipse, we can see that two meta-

nodes are interfering with each other. Next, in the area circled

by the red oval, there are many small meta-nodes consisting of

a small number of nodes. Nodes of different colors belong to

different meta-nodes. The close proximity of nodes of different

colors means that the distance between meta-nodes is close.

On the other hand, in the hierarchical graph layout after

169

(a) Layout no.4.

(b) Layout no. 14.

Fig. 6: Examples of layouts before optimization.

optimization shown in Fig. 7, such overlaps of meta-nodes

are hardly observed. This means that the improvement in

the evaluation of Clutter due to optimization was visually

confirmed in the graph layout as well.

Next, among the graph layouts shown in Fig. 7, Fig.

7b has a high Sprawl evaluation, while Fig. 7a is a graph

layout with low Sprawl evaluation. From a space-wasting

perspective, comparing these two layouts, little difference is

visually recognizable. This means that even though there is

numerical improvement in the evaluation of Sprawl, the visual

improvement is small and difficult to recognize.

2) Numeric Evaluation: We calculated the Sprawl and

Clutter values of individuals of the initial and final generations,

and compared them between them. The comparative results

(a) Layout no.9.

(b) Layout no. 18.

Fig. 7: Examples of layouts after optimization.

of the average of each generation is shown in Table III. The

evaluation distribution of each layouts in a generation is shown

in Fig. 9.

TABLE III: Comparison of Sprawl and Clutter averages between
first and last generations.

Sprawl Clutter

First Generation 45.48 1.717
Last Generation 42.62 1.504

According to Fig. 9, the maximum value of the results is

not improved by before and after optimization. In other words,

there are several undesirable graph layouts in every generation.

On the other hand, the values of Table III and the third

quartiles of Fig. 9 have decreased significantly. This indicates

170

Fig. 8: An enlarged view of the center of the optimized layout shown
in Fig.6a.

that the number of highly evaluated layouts in one generation

has increased overall. In summary, the application of GA

enable us to increase a number of highly evaluated hierarchical

graph layouts. However, some layouts in one generation got

low evaluation even after optimization. Therefore, it is very

important to select an appropriate layout from the optimized

hierarchical graph layouts at last.

V. CONCLUSION

In this paper, we addressed the layout optimization of hier-

archical graphs as a multi-objective optimization problem and

applied an optimization method for hierarchical graph layout

using GA. For the objective function, we applied Sprawlter,

a numerical evaluation formula specialized for hierarchical

graph layouts. The obtained hierarchical graph layouts were

compared before and after optimization, and we found that the

method is effective both numerically and visually.

For future work, we would like to apply more objective

functions for GA that focuses not only on Sprawl and Clutter,

but also on the metrics related to the connectivity of the graph.

In particular, the hierarchical graph layout method employed

in this paper [5], ensures a certain degree of space utility

by internal parameters, so all layouts have high evaluation

values for Sprawl, and numerical differences of Sprawl among

layouts are small. In addition, it is difficult to recognize the

superiority among layouts generated by the proposed method

while looking at them. Therefore, it is necessary to apply

different objective functions in order to achieve more drastic

improvements.

REFERENCES

[1] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist multiob-
jective genetic algorithm: NSGA-II.”, IEEE transactions on evolutionary
computation, vol. 6, no. 2, pp. 182-197, 2002.

[2] C. M. Fonseca, P. J. Fleming, “Genetic Algorithms for Multiobjective
Optimization: Formulation”, Discussion and Generalization., Proceed-
ings of the 5th international coference on genetic algorithms, vol. 93,
pp. 416-423, 1993.

(a) Comparison of the Sprawl metric values. The Sprawl metric
evaluates space waste. The larger the Sprawl metric values are,
the larger space on canvas is wasted.

(b) Comparison of the Clutter metric values. The Clutter metric
captures cluttering among nodes and edges. The larger the Clutter
metric values are, the more overlaps of nodes and the more
cossings of edges a loyout has.

Fig. 9: Comparison of evaluation values of before and after the
optimization. Left box represents distribution of evaluation
values of layouts before optimization, Right box represents
after optimization. For each metrics, larger number are worse.

[3] N. Gunantara, “A Review of Multi-Objective Optimization: Methods and
its Applications.”, Cogent Engineering, vol. 5, no. 1, 2018.

[4] T. Hiroyasu, M. Miki, S. Watanabe, T. Sakoda, J. Kamiura. “Evaluation
of Genetic Algorithm for Objective Computation Methods.”, The Sci-
ence and Engineering Review - Doshisha University, vol. 43, no. 1, pp.
41-52, 2002.

[5] T. Itoh, K. Klein, “Key-node-Separated Graph Clustering and Layouts
for Human Relationship Graph Visualization.”, IEEE Computer Graphics
and Applications, vol. 35, no. 6, pp. 30-40, 2015.

[6] Z. Liu, T.Itoh, J. Q. Dawson, T. Munzner. “The Sprawlter Graph
Readability Metric: Combining Sprawl and Area-Aware Clutter”, IEEE
Transactions on Visualization and Computer Graphics, vol. 26, no. 6,
pp. 2180-2191, 2020.

[7] H. Purchase, “Which Aesthetic Has the Greatest Effect on Human
Understanding?.”, In International Symposium on Graph Drawing, pp.
248-261, 1997.

[8] N. Srinivas, K. Deb, “Multiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms.”, Evolutionary computation, vol. 2, no.
3, pp. 221-248, 1994.

[9] Y. Tian, L. Si, X. Zhang, R. Cheng, C. He, K. C. Tan, Y. Jin,
“Evolutionary Large-Scale Multi-Objective Optimization: A Survey.”,
ACM Computing Surveys (CSUR), vol. 54.8, pp. 1-34, 2021.

[10] C. Ware, H. Purchase, L. Colpoys, M. McGill, “Cognitive Measurements
of Graph Aesthetics.”, Information visualization, vol. 1, no. 2, pp. 103-
110, 2002.

171

