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Abstract—Infectious diseases are typically transmitted through
close contact with infected persons. The effective management of
overcrowding is a crucial issue for events with a large number
of attendees. Since the COVID-19 outbreak, analyzing people
flow to recognize pedestrian behavior and walking patterns have
been attracted studies. Visualizing crowded high-risk situations
for infection at large gatherings is a complex task. It requires an
approach that can effectively represent both spatial and temporal
features while ensuring that the visibility of walking paths is not
significantly compromised. To address these issues, we propose
a novel approach for visualizing proximity as a network that
represents the distance relationship between pedestrians. We
developed the visualization system linking three components:
Proximity Network, the walking paths of selected pedestrians
from the network, and the temporal statistics of pedestrian traffic.
Users of this system can freely select a group of pedestrians from
Proximity Network and observe the paths of the selected pedes-
trians. This procedure enables better visibility of walking paths
and an understanding of their spatio-temporal characteristics
because only a smaller number of paths are drawn. This paper
presents our case study of the proposed method for visualizing
pedestrian proximity using real-world people flow data collected
at an event site.

Index Terms—Visualization, People flow, COVID-19.

I. INTRODUCTION

People have been expected to avoid the “three Cs” (closed

spaces, crowded places, and close-contact settings) in response

to the outbreak of COVID-19, and to keep any necessary

outings or travel short to reduce physical contact with others.

These requests are based on the idea that infectious diseases

spread through contact with infected persons. For that reason,

mass-gathering events such as sports events or music concerts

held under such circumstances, reducing overcrowding has

been an important issue. Therefore, the analysis of pedestrian

movement has been an actively discussed topic.

There have been various methods for measuring the people

flow including capturing video images via cameras and obtain-

ing data from GPS. We can obtain various insights regarding

human behavior patterns and walking conditions by analyzing

the people flow data. Such insights can be applied in various

fields, including tourism, urban planning, disaster prevention,

marketing, and others. For example, we can use it to improve

the layout of merchandise in shopping malls [17] or to identify

problems with evacuation routes during disaster drills [10].

Thus, the analysis of people flow supports our daily lives. As

a result, numerous studies for analyzing human traffic have

been presented.

There have been several methods for visualizing congestion.

Alia et al. [1] represented the crowded areas with heatmaps.

Wang et al. [19] visualize an undirected graph with walkways

as edges and intersections as nodes. Each node is assigned a

resistance that indicates how much energy a pedestrian might

need to navigate through that node. However, conventional

methods do not identify the walking paths of the persons

involved in the congestion. Regarding infectious diseases, a

particular warning situation is the proximity of the pedestrian

groups and stagnated flow. On the other hand, there are few

methods for the visualization of the people flow based on the

proximity.

Based on these backgrounds, we specifically focus on the

“proximity status” of individuals in our analysis. In addition,

we develop a method that visualizes the proximity and the

walking paths of proximate persons to observe characteristics

with a high risk of infection. This method constructs a single

visualization space by linking the following three components.

(Figure 1)

• Proximity Network: A network generated by represent-

ing pedestrians as nodes and connecting pedestrians who

have proximity by edges (Figure 1(a)).

• Proximity Path: Walking paths of pedestrians specified

in Proximity Network (Users can click on nodes to select

drawing targets) (Figure 1(b)).

• Pedestrian Statistics: Bar chart representing the number

of pedestrians per second (Figure 1(c)).

We can get an overview of how proximity among in-

dividuals is taking place by observing Proximity Network.

Furthermore, we can discover the clusters of pedestrians’

proximity in the network and the patterns of their walking

paths.

The remainder of this paper is organized as follows. Section

2 introduces related work on the visualization of pedestrian

paths and the analysis of the people flow during an outbreak.

Section 3 presents the detail of the proposed technique. Section

4 introduces case studies using the people flow before and

after the spread of infection to observe differences. Section 5

summarizes this paper.
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Fig. 1: Visualization system of pedestrian walking behavior

(a)Proximity Network. (b)Proximity Path. (c)Pedestrian Statistics.

II. RELATED WORK

A. Visualization of walking paths

There are numerous methods to visualize pedestrian walking

behavior. However, visualization techniques specialized to a

huge amount of data are required because the people flow

information often contains large-scale spatial-temporal data.

One of the typical ideas for visualizing such data is applying

spatial-temporal 3D visualization. McArdle et al. [11] pro-

posed a visualization method that represents spatial-temporal

information by drawing a walking path with a space-time cube

(STC). Andrienko et al. [3] proposed a “trajectory wall” as an

extension of space-time cubes. This approach needs to tackle

visual cluttering as the number of pedestrians increases and

the need for manipulation to observe features.

Another idea is linking multiple visualization components to

represent such complex data. It is difficult to visualize all fea-

tures in a single static visualization component, so it is better to

correlate features that can be represented on multiple visualiza-

tion components together. As a linked visualization approach,

Guo et al. [7] developed a composite visualization tool to

analyze patterns of various moving vehicles, by adopting not

only direct drawing of trajectories on maps, but also other visu-

alization methods including piled polyline charts, scatterplots,

and parallel coordinates plots. Additionally, Fukute et al. [6]

proposed a method that simultaneously displays major routes

classified by spectral clustering and temporal changes in flow

rate per clustered routes using the ThemeRiver technique. As

an experimental approach to investigate this issue, Wielebski et

al. [20] conducted a comparative experiment of features from

visualizations of the same walking path information using six

different methods.

Visualization of moving objects has a serious problem of

comprehensibility due to the visual cluttering as the number of

moving objects increases. Several methods have been reported

that apply clustering, sampling, or character-coding to a set

of paths to draw characteristic paths. Based on this idea,

Andrienko et al. [2] proposed an interactive clustering method

for trajectories and visualized popular walking patterns on

maps. Yabushita et al. [22] proposed a method for summa-

rizing and visualizing people flow by approximating walking

paths on a two-dimensional grid and drawing bundles of

similar walking paths with a large number of people walking.

Guo et al. [8] classified walkers’ trajectories according to

their speed and direction, and also developed a system to

visualize important trajectories using meaningful colors based

on HSV model. Miyagi et al. [12] presented a visualization

technique that firstly compresses the people flow datasets by

a character-coding method and then applies natural language

processing methods to extract movement patterns and classify
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walking paths. Tsuchida et al. [18] developed a visualization

system that firstly represents the distribution of walking speed

and then provides an interaction mechanism to specify user-

interested subregions and display paths only through the

specified subregions.

Though there have been a lot of visualization techniques

for the paths of pedestrians, there have been a small number

of methods focusing on the proximity of the pedestrians. As

an example, Gupta et al. [9] visualized relationships among a

small number of pedestrians and places where multiple persons

stayed at the same time. Differently from such studies, our

method aims to visualize only the paths of pedestrians related

to infection caused by the proximity and to visualize the

features of both time and space by linking three visualization

methods.

B. People flow and COVID-19

With the outbreak of the COVID-19 infection, there have

been various studies related to the analysis of the people

flow, including the effects of restrictions on movement due to

measures such as emergency declarations on the people flow

[16] [4] and comparisons of human behavior patterns before

and after the spread of infection [5] [21].

Physical distancing is one of the most effective infectious

disease control measures. Rezaei and Azarmi [14] developed

a system to detect violating physical distancing in real-time

from image data acquired by surveillance cameras. Moritz

et al. [13] measured the number of contacts during concerts

held under three different scenarios: (1) No restrictions (the

pre-pandemic setting), (2) moderate restrictions (checkerboard

pattern seating, twice as many entrances as in (2)), and (3)

strong restrictions (pairwise seating with 1.5 meters interspace

to the next pair, four times as many entrances as in (1)), to

investigate the risk of infection during large events. The results

showed that scenarios (2) and (3) resulted in a strong reduction

in contacts.

The infection spreads through contact with infected individ-

uals. Therefore, it is effective to avoid high density situations

to reduce the opportunities for people to come into contact

with each other and limit the spread of infectious diseases [15].

Thus, it is important to observe the proximity of pedestrians;

however, there have been a small number of visualization

methods for the people flow based on proximity. Our method

differs from conventional methods in that it emphasizes the

process of narrowing down the walking paths with a high risk

of infection through visualizing proximity status.

III. PROCESSING FLOW OF THE PRESENTED

VISUALIZATION SYSTEM

This section presents the processing flow of the proposed

system consisting of the following three steps: people flow

measurement, extraction of proximity, and visualization.

A. People flow measurement

We measure the people flow using LiDAR, a remote sensing

technology that uses laser light to measure distances. Privacy

protection is a concern if the people flow data is measured by

a camera and human faces are therefore taken. On the other

hand, LiDAR only stores the distance and angle to the target

object, thus people flow data can be measured without storing

personally identifiable information. Figure 2 shows an example

of measurements by LiDAR.

Fig. 2: A screen of LiDAR when measuring the people flow.

We record time, pedestrian ID and coordinates through the

measurement. The paths of pedestrians can be reproduced by

concatenating the coordinates of pedestrians with the same ID

in chronological order.

B. Extraction of proximity information

The method detects pairs of pedestrians that have been in

close proximity to each other for a certain period of time,

based on the coordinates of pedestrians that appear at the

same time. In this study, “proximity” is defined as the state

in which two pedestrians have been within a certain distance

for a certain period of time. We defined two meters as the

threshold distance based on the definition of physical distance

in Japan. In addition, we defined 60 seconds as the threshold

period of time because there has been an illustrative case of

infection occurring through one to two minutes of contact with

an infected person [23].

C. Visualization

The proposed visualization system consists of three linked

visualization components: Proximity Network, Proximity Path,

and Pedestrian Statistics (Figure 1). This subsection describes

a detailed implementation of each visualization component.

1) Proximity Network: This component visualizes the prox-

imity status as a network consisting of nodes corresponding

to pedestrians and edges connecting pedestrians that are in

proximity as shown in Figure 1(a). Only pedestrians that meet

the proximity condition appear as nodes. Edges become thicker

as the contact duration increases, and the colors of nodes

depict the time when the pedestrian is walking.

2) Proximity Path: By specifying a set of pedestrians from

the network described in Section III-C1, the walking paths of

the specified pedestrians are drawn as shown in Figure 1(b).

One path corresponds to one pedestrian. Here, the display

space of this component has the same aspect ratio as the
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space where the people flow data was measured. Users can

observe the paths of specified pedestrians in detail since a

smaller number of the paths are drawn while avoiding visual

cluttering. Furthermore, the colors of the walking paths depict

when a pedestrian walked there during the total walking time

of the specified pedestrians. This allows users to understand

situations where the walking paths are close at a certain period.

3) Pedestrian Statistics: The number of pedestrians ob-

served at each time point is displayed as a bar chart as

shown in Figure 1(c). The vertical line shows the number of

pedestrians and the horizontal one shows the time. Pedestrian

Statistics uses the same color-coding as in Figure 1(a) based on

the time period. Meanwhile, the time during which specified

pedestrians were walking is displayed in gray as shown in

Figure 1(c). This allows users to understand the position

of the time when specified pedestrians were walking in the

entire dataset. Moreover, users can understand the relationship

between the occurrence of proximity and the number of

pedestrians.

IV. CASE STUDY

This section presents an example analysis of the people flow

measured before and after the spread of COVID-19 using the

proposed method. The goal of this case study is to detect

changes in the movements of persons before and after the

spread of infectious diseases.

A. Dataset

We measured the people flow in the stadium, assuming a

sporting event as a mass-gathering event. It is estimated that

the concourse is particularly crowded because the spectators

can move around freely, so we installed the measurement

instrument in a part of the concourse. As a result, we prepared

three datasets for [Before the pandemic] from 2019, and three

datasets for [With the pandemic] from 2020. All measurements

were carried out continuously for six hours, from before the

start of the game until its completion.

Table I shows the approximate number of pedestrians in-

cluded in each dataset that compares before and after the

outbreak of the COVID-19 infection. The datasets are sorted

by date of data measurement. Remark that it is possible to

count the same pedestrian multiple times as different ones

since the LiDAR cannot assign the same ID to a pedestrian

again when it goes outside the measurement range and then

comes back.

TABLE I: Approximation of pedestrian traffic.

Before the pandemic (a) (b) (c)
27000 70000 44000

With the pandemic (d) (e) (f)
3000 4000 4000

B. Result

This subsection introduces visualization results of the data

measured at the stadiums, as shown in Table I.

Fig. 3: Different phases of the game in five colors.

On the day the measurements were taken, a soccer game

was being played at the stadium, so the color of the nodes

in Proximity Network (Figure 1(a)) and Pedestrian Statistics

(Figure 1(c)) was divided into five colors based on the phase

of the soccer game (Figure 3). Difference colors represent the

phase of the match in Figure 3.

1) Proximity occurrence.: Figure 4 shows an example of

Proximity Network, while Figure 5 shows an example of

Pedestrian Statistics from the measurement data of (a) to (f).

As a result of Proximity Network, the nodes of Before the

Match (Red nodes) appeared more than in other phases. On

the other hand, the nodes of After the Match (Blue nodes) ap-

peared relatively rare, even though the number of pedestrians is

about the same as Before the Match. This appearance indicates

that spectators went home promptly after the match both “Be-

fore the pandemic” and “With the pandemic”. Furthermore,

there are orange, yellow, and green nodes corresponding to

the proximity that appeared during the match “Before the

pandemic”, but not “With the pandemic”. This appearance

indicates a decrease in the number of spectators leaving their

seats during the game. We assume three possible reasons for

this change in the spectators. Firstly, it could be due to the

prohibition of eating food in the venue during the measurement

period of “With the pandemic”. The spectators can usually

buy meals at food stands in the concourses of the stadiums

we have measured. However, the food stands were closed for

infection control. Secondly, it could be just due to the attitude

of the spectators. During the period of “With the pandemic”,

a cap was imposed on the maximum number of spectators in

the stadium. Therefore, the spectators in the venue might be

enthusiastic soccer fans, indicating that they might focus on

the game during the match.

2) The size of proximity group: We have drawn the walking

paths of the proximity groups that Figure 4(b) contains. First,

we draw a small group of 2 to 3 persons, as shown in Figure

4(b)(1).

The result shown in Figure 6(a) indicates that their walking

paths are similar in time and route, which suggests that the

small group of pedestrians might be acquaintances.

On the other hand, in Figure 6(b), the paths of Figure

4(b)(2) exhibit few commonalities, while a high frequency of
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(a) (b) (c)

(d) (e) (f)

Fig. 4: Visualization results of Proximity Network.

proximity occurs within a certain range. Thus, their proximity

is probably unintended. Figure 4(b) contains a gigantic prox-

imity community of more than 100 pedestrians. This group

is formed by the overlapping unconscious contacts of small

groups. This means that pedestrians associated with such large

groups possibly have unknowingly come into contact with

infected. Therefore, we need to be on the lookout for the

occurrence of such groups in terms of infectious diseases. On

the other hand, the sizes of the proximity groups were not

very large after the spread of COVID-19. This result suggests

that in addition to the small number of pedestrians, spectators

had the awareness to keep their distance from others.

V. CONCLUSION

This paper proposed a system to visualize the characteristics

of the people flow with a high risk of infection by focusing

on the proximity state. This method tackles the visibility issue

by extracting pedestrians in close proximity from large-scale

people flow data and by drawing only the walking paths of

user-specified pedestrians. This feature facilitates the discovery

of walking path characteristics related to infection.

In Section IV, we presented the visualization results of

measured data before and after the outbreak using the proposed

method. The results show that the occurrence of proximity was

significantly reduced and the sizes of the proximity groups got

smaller after the outbreak.

Future issues of this study are the following.

• Applying people flow data measured under other condi-

tions.

• Improvement of network layout and drawing methods.

• Automatic recommendation of features to be observed

• Validate infection control measures based on the findings

of the proposed method.

We applied the data measured before and after the outbreak

as a visualization example in this study. It would be possible

to compare changes in walking routes due to conditions such

as weather or days of the week, by applying the people flow

data measured under other conditions. It can also be applied

to data measured at other locations to see how the structure

of the building affects the people flow. In addition, we would

like to improve the layout algorithm of Proximity Network

because the current implementation does not represent spatial

information. When dealing with larger data sets, there is an

increasing need to extract spatio-temporal information from

Proximity Network to gain a comprehensive understanding of

the proximity situation at a glance.

Furthermore, automatic recommendation system of features

to be observed can be a significant help to users when

using this visualization system. Our future work includes

the development of an algorithm that detects anomalies and

indicates when and where they are occurring for the above
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5: Visualization results of Pedestrian Statistics.

(a) Figure 5(b)(1) (b) Figure 5(b)(2)

(c) Color map of trajectory

Fig. 6: Visualization results of Pedestrian Path.

purpose.

Finally, we can devise infectious disease control measures

based on the information obtained from the visualization sys-

tem. The proposed system can be applied to the people flows

obtained from crowd simulation. Therefore, we can compare

changes in pedestrian movement between the measured data

and the simulated data with the infection control measures

developed.
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