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Abstract—Ensemble learning that combines multiple weak
learners for enhanced performance, is widely used but suffers
from low interpretability/explainability. This leads challenges not
only in operational aspects like model maintenance and quality
assurance but also in addressing societal needs such as fairness
and privacy. To tackle this, we propose a new visualization
method focusing on the relationship among weak learners in en-
semble models to improve understanding of the model structure
and its learning processes. In this paper, we defined the relation
between weak learners based on a “common sample” in gradient-
boosting decision trees, and a visualization method as a three-
dimensional graph structure was proposed. Ensemble models
trained with synthetic data sets that include typical distribution
shifts and real-world open data sets were visualized. As a result,
we demonstrated that this approach enables a more accessible
understanding of the behavior and structure of ensemble models
comprising multiple weak learners, facilitating the identification
of overfitting and underfitting through visualization of changes
during the training and validation processes.

Index Terms—Visualization, Machine learning, Ensemble
model

I. INTRODUCTION

Predictive models using machine learning techniques are

widely employed across various industries. Among machine

learning methods, ensemble learning aggregates multiple weak

learners to achieve robust expressive and predictive per-

formance, rendering it widely favored for its practical im-

plementation [1]. However, the complexity caused by the

large ensemble size brings challenges in comprehending the

overall model structure and in providing interpretability and

explanatory insights to users. Analyzing the model structure is

crucial not only for operational considerations such as model

quality assurance and maintenance but also for increasing in-

terpretability/explainability to address social imperatives such

as fairness and privacy protection. Thus, various information

visualization techniques have been proposed to facilitate the

analysis and assessment of machine learning model structures.

Meng et al. [2] proposed a visualization system that compares

multiple models based on training data features and model

performance. Similarly, Zhang et al. [3] and Nagasaka et

al. [4] introduced visualization systems for deep learning

models within immersive environments, demonstrating the

effectiveness of visualization within a three-dimensional space.

This study proposes a novel visualization approach that

allows users to graphically overview the model structure of

ensemble decision trees based on the relationships among

weak learners in the model using an interactive interface.

We also provide interactive functions aimed at enhancing the

interpretability and adjustability of developed models. This

method facilitates comprehension of the behavior and struc-

ture of ensemble models comprising multiple weak learners.

Moreover, by visualizing changes throughout training and

validation, it makes users easier to identify model overfit-

ting and underfitting, significant sources of error in machine

learning applications. It helps users gain insights regarding

the challenges in machine learning operations (MLOps [5])

such as evaluating the credibility of the learning outcome,

detecting the distribution changes in the dataset, and inter-

preting the model output including identifying the cause of

the prediction errors in the operation phase [6]. We adopted

a gradient-boosting decision tree (GBDT) [7] as an exampled

ensemble decision tree. This paper demonstrates the utility of

the proposed visualization method through experiments with

synthetic datasets and real-world open datasets,

II. RELATED WORKS

A. Visualization of Decision Trees

Numerous studies have been published on visualization

techniques aimed at improving the interpretability and pre-

diction accuracy of machine learning models. Wang et al.

introduced an interactive visualization tool [8] designed to

assist users in exploring models that align with their do-

main knowledge and values among a collection of sparse

decision trees exhibiting similar performance but differing

in data explanatory properties (known as “Rashomon” ef-

fect). Kovalerchuk et al. [9] proposed two novel decision

tree visualization methods tailored for machine learning. This

study demonstrated that observing and analyzing relationships
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among attributes, decision tree structure, and data flow within

the decision tree can effectively mitigate over generalization

and overfitting of models.

B. Visualization of Ensemble Learning

While traditional decision tree visualization approaches

focused on representing the structure and data flow of an

individual tree, several studies attempted to visualize ensemble

model as a whole for improving its performance based on

facilitating the understanding of entire model behavior. Stack-

GenVis [1] is a system designed to assist users in dynamically

adapting performance metrics, managing data instances, se-

lecting essential features, and identifying effective algorithms

within a given dataset to measure predictive performance. The

system enables the discovery of not only the performance of

the final model but also the identification of over-promising

or under-performing models utilized throughout the process.

Nsch et al. [10] proposed a visualization approach inspired

by botanical principles that enhances intuitive comprehension

within a two-dimensional framework. This method enables

tailored representation of random forest characteristics through

visual attributes, facilitating interactive analysis of forest struc-

ture. However, it is still challenging in revealing continuous

relationships among weak learners, such as those in GBDT,

using these approaches. Moreover, a small number of studies

have focused on elucidating the collective properties of entire

ensemble models stemming from interactions among weak

learners.

Regarding the study of visualization of the GBDT model, a

system focused on advertising datasets was proposed. Gao et

al. [11] proposed a visual analysis system to help advertising

analysts understand the working mechanism of GBDT-based

CTR prediction models from three levels: instance, feature,

and model, and to facilitate the model tuning process. Based

on the background of online advertising, combined with the

three key participants in online advertising campaigns and the

CTR prediction model building and tuning process, analysts

can intuitively explore instances of advertising data and the

corresponding prediction results.

This study proposes a novel visualization method tailored

for ensemble decision trees on any dataset, addressing the

aforementioned limitations. The focus lies on the concurrent

examination of not only predictive data features and model

performance outcomes but also delineating interrelationships

among weak learners (hereafter, “trees”) and discerning how

variations in dataset composition influence the learning history

of the models. The proposed approach aims to foster a

shared understanding and collaborative exploration between

machine learning practitioners and domain experts responsible

for model decision-making processes.

III. PROPOSED METHOD

A. Overview of the Ensemble Model Visualization

The following is an overview of the proposed ensemble

model visualization method. As shown in Fig. 1, the method

visualizes a model structure of GBDT as a three-dimensional
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Fig. 1. Conceptual diagram of the proposed visualization for ensemble
decision tree.

plot of a layered graph structure along the z-axis, where each

layer that lies in the xy-plane represents a tree in the GBDT

and each node represents a leaf node in the tree. The size and

color of a node represent the number of samples of a data set

allocated to the leaf node and the average prediction errors,

respectively. While the distance between two nodes in the

same layer represents the similarity of features of the samples

allocated in the corresponding leaves in the trees, the distance

between nodes in two adjacent layers represents the similarity

of the features as well as the commonality of the samples

in the leaves. The solid links connecting nodes in the figure

visualize this commonality among training data, while dashed

links highlight the commonalities that appeared at inference

(i.e., among test data) that did not appear at the training time.

The following subsection explains the details.

1) Relations Among Weak Learners: Our visualization aims

at providing insights regarding the relations among the weak

learners, i.e., decision trees, consisting of ensemble trees.

Specifically, we utilize the commonality of the samples al-

located in the leaf nodes. The commonality of a leaf i of the

kth tree and a leaf j of the (k + 1)th tree is defined as the

ratio of the samples commonly allocated to the leaves i and j
among the sample allocated to the leaf i. More formally, the

ratio of the common samples c
(k)
i,j is defined as:

c
(k)
i,j =

∣∣∣S(k)
i ∪ S

(k+1)
j

∣∣∣∣∣∣S(k)
i

∣∣∣
, (1)

where S
(k)
i is the set of samples allocated to the leaf i in the

kth tree among a dataset. The thickness of the solid links in

Fig. 1 is based on the ratio of the common samples.

2) Optimization of Node Coordinates: The coordinates of

each node on the xy-plane are computed as follows:

1) For each the kth decision tree, compute initial embed-

ding matrix V (k) = [v
(k)
1 , ..., v

(k)
nk ]

T, where nk is the
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Fig. 2. Overview of the proposed visualization method. This consists of: a) top view, b) side view, c) interactive view, d) property view, and e) user interface.
The interactive view shows the specified area indicated as the white rectangle in the side view, and the detailed information (e.g., feature distributions) of the
selected leaf node is displayed in the property view.

number of samples in the tree, based on the distance

matrix D(k), where D
(k)
ij := ‖u(k)

i − u
(k)
j ‖2 and u

(k)
i is

the average feature of the samples in S
(k)
ij .

2) To place similar nodes close in our visualization, min-

imize the following loss function by gradient descent

w.r.t. V for 500 epochs:
∑
k

∥∥∥D̂(k) −D(k)
∥∥∥
2
+
∑
i,j

c
(k)
i,j

∥∥∥v(k)i − v
(k+1)
j

∥∥∥
2

(2)

where D̂
(k)
ij := ‖v(k)i − v

(k)
j ‖2. The first term considers

the nodes in each layer while the second term is designed

for the nodes in two adjacent layers.

3) To avoid local optimal solutions due to “twisting” of

the links, for every 100 epochs in the previous step,

we rotate each V (k) around the origin (0, 0) so that the

second term in 2 is minimized.1

B. Interactive Interface for Proposed Visualization

Fig. 2 shows the prototype interface of the proposed vi-

sualization method implemented using Unity2. This consists

of: a) top view, b) side view, c) interactive view, d) property

1Mirrored rotations are also considered.
2https://unity.com

Fig. 3. Differential view between two datasets. a) The result of training data,
and b) that of test data. In b) node color denotes the difference of residual
and the red links indicate novel links compared to the training data.

view, and e) user interface. In the interactive view, a user can

view the visualized model while changing the viewing angle

and scale interactively. The specified area being viewed in the

interactive view was indicated as the white rectangle in the side

view. When a user selectes a leaf node in the interactive view,

the detailed information (e.g., feature distributions of samples

contained in the node) is displayed in the property view, and

the likes connected to the selected node were highlighted in

purple.
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Fig. 4. Examples of distribution changes with artificially created datasets. Top
left) Training dataset, Top right, Bottom left, and Bottom right) Test dataset
with Y-shift, X-shift, and XY-shift, respectively.

Moreover, upon activating the Test Result button, the dif-

ference between the training and test data sets is visually

depicted as differential view shown in Fig. 3. Fig. 3a) shows

the visualization with the training data, and Fig. 3b) shows

the model prediction result when the test data is fed to the

trained model. Changes in error magnitude between these

datasets are indicated by node color variations; nodes turning

red denote increased errors relative to the training data, while

blue nodes denote error reductions. Links highlighted in red

color depict common samples that did not appear in the

training data as explained in Section III-A. This feature offers

a holistic overview of the model training outcomes, facilitating

the identification of anomalous leaf nodes and enhancing

comprehension of dataset disparities. Additionally, this feature

provides detailed insights into individual trees and pertinent

data samples to aid in model refinement and the analysis of

predictive error causes.

IV. EXPERIMENTS

A. Visualizing Distribution Changes with Synthetic Dataset

This section verifies how the proposed method visualizes

diverse distributional shifts between the dataset employed

for training the ensemble model and the dataset presumed

to manifest post-operation. Specifically, we generated the

following three datasets synthetically to illustrate input-output

relationships within the training one-dimensional regression

dataset depicted in Fig. 4 (upper left).

• Partial Distributional changes in the objective variable (Y-
shift in Fig. 4 (upper left))

• Distributional changes in explanatory variables(X-shift in

Fig. 4 (lower left))

• Distributional changes in both the objective and explana-

tory variables (XY-shift in Fig. 4 (lower right))

Fig. 5 summarizes the visualization outcomes of a GBDT

model (specifically LightGBM [12]) constructed with the

synthetic datasets. Fig. 5a) visualizes the result of the training

data, and b), c), and d) show the differential view of Y-shift,
X-shift, and XY-shift result from the training data, respectively.

Observing Fig. 5b) reveals that alterations in the distribution

of the target variable correspond to increased output errors

Fig. 5. Visualization of the synthetic datasets with distribution shifts. a)
Training dataset, b) Y-shift, c) X-shift, and d) XY-shift. b), c), and d) are
shown as differential views with a).

TABLE I
REAL-WORLD OPEN DATASETS USED

Dataset Samples Features

Breast Cancer 683 10
Australian Credit Approval 690 14
Cpusmall 8192 12

at particular nodes indicated with the dashed ellipse (1). Like-

wise, shifts in the explanatory variable distribution manifest as

notable changes in the data sample count as size variations of

the nodes, particularly in regions with smaller sample sizes

during training. Since those samples were not included in

the training data, the prediction error of these nodes (dashed

ellipse (2) in Fig. 5c)) significantly increased indicated by the

deep red color of the node. Moreover, when both the target and

explanatory variable distributions change, these alterations are

concurrently visualized through node color and size difference

(dashed ellipses (3) in Fig. 5d)).

B. Case Studies with Real-World Datasets

Subsequently, we visualized a GBDT model (LightGBM)

trained on real-world data summarized in Table I for a publicly

accessible regression task [13] using the proposed method.

Herein, we present the estimation outcomes derived from the

GBDT model comprising 30 trees, applied to mixed data.

1) Breast Cancer Dataset: Fig. 6 depicts the visualization

outcomes. The figure on the right illustrates the differential

view of the test dataset compared to the training dataset on

its left. As shown in the figure, many novel common samples

appeared in the test dataset (indicated as red dashed links)

and the prediction errors of nodes containing those samples

108



Fig. 6. Differential view in Breast Cancer dataset between training data (left)
and test data (right).

increased. The feature distributions of the same node are

shown in the property view in both figures. From this view, we

could observe that samples the value of feature x0 significantly

varied from that of training data contained in the test data,

and hence it influenced the prediction error. Consequently, we

supposed that the absence of samples from regions close to

the test data in the training dataset led to overfitting and an

increase in node errors.

2) Australian Credit Approval Dataset: Fig. 7a), b), and

c) shows the visualization result (top/side views) of the Aus-

tralian dataset with 10, 20, and 30 trees, respectively. The

model structure was initially separated into two pathways

as shown in Fig.7a)b), and subsequently converged around

the 23rd tree, followed by branching again as highlighted

in Fig. 7d). This visualization result suggests a substantial

dichotomy in the feature space of samples within the training

data. Fig. 8 presents a conventional visualization of decision

trees for the 0th (top row), 20th (2nd row), 23rd (3rd row),

and 25th (bottom row) trees. Notably, for the 23rd tree, we

observed a significant alteration in the splitting criteria from

previous trees, such as the 0th and 20th trees. Furthermore, in

Fig. 7 (d), the trajectory of sample paths within nodes after the

merging and re-branching after the 23rd tree reveals a return

to a previously encountered region. This was also observed

as the similar root splitting criteria of the 25th tree to that

of the 0th/20th tree, as shown in the bottom row of Fig. 8.

This behavior suggests that a strategy of data splitting before

training is likely to yield better outcomes.

3) Cpusmall Dataset: Fig. 9 depicts the visualization re-

sults of the Cpusmall dataset in the top view (left) and side

view (right). We found a more pronounced separation in

the structure in this figure compared to the visualization of

the Australian dataset. In this case, the majority of samples

concentrated in the region indicated in Fig. 9(1), whereas

certain samples followed a clearly separated route as the

highlighted links in Fig. 9(2). Fig. 10 shows the target value

distribution of samples in the dataset. The distribution colored

in blue represents the target values of samples in the region

(1), while the orange distribution represents that of samples in

the region (2). This implies that the samples in the region (2)

hold not only variated feature values from that in the region

(1) but also isolated target values. The observation of such

Fig. 7. Visualization of Australian dataset with the different number of trees.
The number of trees was set as: a) 10, b) 20, and c) 30, respectively. d)
Highlighting the route to the selected node.

Fig. 8. Tree diagram of 0 th (top row), 20 th (2nd row), 23 rd (3rd row), and
25 th (bottom row) tree. The same/similar root-splitting rules are highlighted
with the common text color.

a unique route suggests the possibility of identifying outlier

samples within the dataset and/or evaluating if the trained

model successfully splits the problem into subproblems.
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Fig. 9. Visualization of Cpusmall dataset, left) top view, and right) side view.

Fig. 10. Target value distribution of samples in two regions is shown in Fig. 9.

CONCLUSION

In this paper, we introduced a novel visualization method

that emphasizes the relationships among weak learners, pre-

senting them as a graph structure in three-dimensional space

to facilitate comprehension of the behavior and structure of

ensemble models comprising multiple weak learners. The pro-

posed method enables the presentation of typical distributional

changes in a dataset—critical issues in the practical operation

of machine learning models in a visually accessible format.

This visualization aids in identifying instances of overfit-

ting and underfitting, challenges often not readily discernible

through conventional methods. Additionally, the method as-

sists in determining the potential for problem decomposition

into subproblems when root bifurcations occur within the

model structure. Subproblem decomposition in Decision Trees

is vital for enhancing accuracy and interpretability, as empha-

sized in prior studies [14] [15]. While the proposed method

does not directly partition into subproblems, it provides data

scientists with intuitive insights into factors contributing to

increased prediction error and potential solutions, offering

valuable guidance in problem-solving contexts. As future

work, we aim to validate the efficacy of our visualization

tool as an analytical instrument for both the development and

operation of complex, large-scale machine learning systems.

Furthermore, we intend to apply this method to advance

technologies within the domain of MLOps.
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