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Abstract 
Visualization of distributed processes is useful for the man-

agement of large-scale distributed computing systems. Reactiv-
ity and scalability are especially important requirements for 
such visualization of distributed processes. We have proposed 
the visualization technique "Data Jewelry Box" algorithm, 
which satisfies both of above requirements. The technique can 
be applied for the visualization of distributed processes, how-
ever, the algorithm has a problem that may yield much different 
data layouts even among very similar datasets. This is a serious 
issue for the seamless visualization of time-varying data. 
  To solve the problem, we propose the extension of "Data Jew-
elry Box" algorithm.  The extension places data elements refer-
ring positions of the previous data layout, so that the extension 
can yield similar layouts among similar datasets. This paper in-
troduces the extended algorithm, and proposes the visualization 
system for distributed computing systems using the extended al-
gorithm. 
 
 

1. Introduction 
 
Visualization of distributed computing systems is impor-

tant for the purposes of management and planning of the 
systems. Actually, some monitoring systems for distrib-
uted environments, including OpenView by Hewlett 
Packard [12], became popular because of their conven-
ience. Some novel distributed computing architecture, 
such as the Open Grid Services Architecture (OGSA) [5, 
17], will allow users to freely utilize computer resources 
rather than existing distributed systems, because of the 
capability of flexible creation of service instances. This 
means that usage of distributed computing resources may 
be more complicated when such architectures become 
more popular. We therefore think that real-time visualiza-
tion of distributed processes on such architectures will be 
important for the purpose of management and planning of 
computer resources. 
We assume that satisfaction of the following require-

ments is desirable for the visualization of distributed 
processes: 

[Requirement 1: Reactivity] Distribution of processes 
generally changes second-by-second. It is important to 
very quickly represent the distribution for real-time moni-
toring of distributed computing systems. 
[Requirement 2: Scalability] Parallel application may 
distribute thousands of processes on large-scale distrib-
uted computing systems. To monitor the overall behavior 
of the parallel computation, it is desirable to represent all 
of thousands of processes in one display. In other words, 
it is desirable to reduce the occupancy of display layout 
areas. 
[Requirement 3: Hierarchy]  Above thousands of proc-
esses can be categorized according to several attributes, 
such as CPUs, users, and applications. The processes can 
be therefore arranged as hierarchical data according to the 
categorization. Hierarchical data visualization techniques 
are therefore useful for the visualization of distributed 
processes. 
[Requirement 4:  Similarity] Hierarchical data formed 
by above categorization usually slightly vary while a 
short time step. In other words, two hierarchical data 
while a short time step are usually very similar. It is de-
sirable that visualization technique generates very similar 
images between very similar data for the seamless repre-
sentation of time-sequence of the data. 

 
Figure 1 Example of hierarchical data visualiza-
tion by Data Jewelry Box. 

 We have proposed Data Jewelry Box [7, 8], a visualiza-
tion technique for providing overviews of large-scale hi-
erarchical data. As shown in Figure 1, Data Jewelry Box 



represents hierarchical data as nested rectangles. It repre-
sents leaf-nodes as icons, and non-leaf-nodes as nested 
rectangular borders. The technique satisfies requirements 
1, 2, and 3, since it calculates display layout of thousands 
of nested nodes in one second or so. However, it has a 
bottleneck for requirement 4, since it sometimes yields 
very different display layout results among very similar 
datasets. 
This paper proposes an extension of Data Jewelry Box 

algorithm [19] that improves the similarity among time-
series data. Given the display layout of previous data, it 
calculates positions of icons and rectangular borders in a 
normalized coordinate. Let us call the table of the posi-
tions “template.” By referring the template, the extension 
calculates similar display layout for a similar data. It is 
especially useful for seamless representation of slightly 
time-varying hierarchical data. 
This paper also presents an implementation of the visu-

alization of distributed processes using the extension of 
Data Jewelry Box algorithm. The implementation sup-
poses that a client application first has a set of processes, 
and then sends all the processes to a service working on a 
server. We call this service the “portal” in this paper. Re-
ceiving the set of processes, the parent server creates sev-
eral service instances and assigns the processes to the in-
stances. After performing the processes, the instances re-
turn the results of the processes to the portal. Finally, the 
portal returns the collection of results to the client appli-
cation. During this procedure, the portal manages the 
status of all the processes, and constructs a hierarchical 
data structure consisting of all of the processes. The im-
plementation frequently updates the hierarchical data, and 
Data Jewelry Box algorithm frequently renders the data 
as Scalable Vector Graphics (SVG) image files. 
In this paper we used a parallel meshing system as the 

application of the presented visualization technique. 
Meshing is a geometric technique that finely divides input 
geometric regions into small pieces of triangular or quad-
rilateral elements. Large-scale manufacturing products 
usually consist of hundreds or thousands of mechanical 
parts, and it is often necessary to mesh the geometries of 
such enormous numbers of parts. Parallelization of the 
meshing process is therefore important in such product 
manufacturing fields. We implemented the meshing sys-
tem under OGSA, and monitor the meshing processes by 
using our visualization technique. 
 

2. Related work 
 
2.1 Distributed processes on Open Grid Services 
Architecture 
 

  Visualization of distributed processes presented in this 
paper has been implemented on OGSA [5, 17], which is 
the novel architecture that integrates Grid Computing 
technologies by combining Web Services mechanisms. 
Grid Computing is a distributed computing infrastructure 
that enables transparent access to and sharing of hetero-
geneous computing resources and software components 
across distributed users and environments. Reference [4] 
defined properties of key connectivity, resource, and col-
lective protocols to realize these features of Grid Com-
puting. Web Services is a framework that enables remote 
and automatic execution of software components via the 
Internet. OGSA enables the flexible utilization of com-
puting resources of Grid infrastructure by applying inter-
faces similar to Web Services. Here, OGSA defines the 
open software components as “Grid service,” and tran-
siently working software components as “Grid service in-
stances.” OGSA has been proposed to provide mecha-
nisms for registering and discovering Grid Services, and 
for creating and executing Grid service instances. 
A typical scenario using OGSA is as follows: Factory 

services for creating Grid service instances are first de-
ployed on Web servers. Programs call the factory services 
to create the instances, and then call functions of the cre-
ated instances to execute the target services. 
The above mechanism allows software developers to 

flexibly control securities and manage distributed com-
puter resources rather than the earlier Grid technologies. 
In the other word, it is possible that usage of computer re-
sources and software services will be more complicated, 
because the service instances can be freely created on ar-
bitrary computer resources. Behavior of systems may of-
ten be very different from what system engineers ex-
pected, and therefore monitoring of the systems will be 
important. That is the main reason why we are focusing 
on the visualization of distributed processes on OGSA. 
 
2.2 Existing hierarchical data visualization meth-
ods 
 
  Hierarchical data visualization is a hot topic in visualiza-
tion research, and actually many techniques have been re-
cently presented.  

Tree representation is the most popular hierarchical 
data visualization technique, used in many programs such 
as famous file system viewers. Several variations, such as 
the Hyperbolic Tree [11], Cone Tree [3], and Fractal 
Views [10], have been described for the interactive visu-
alization of large-scale hierarchical data sets. It is also 
suitable for visualizing the connectivity among nodes. 
Carriere et al. represented all parts of large-scale hierar-
chical data by Cone Tree in [3]. It provides a good over-
view of large-scale data; however, their result contains 
sparse regions. 



Treemap [9], which represents hierarchical data in a 
manner like nested column charts, is a well-known space-
filling approach for hierarchical data visualization. The 
space-filling approach is especially useful for the repre-
sentation of statistics, and overview of the data in com-
pact display spaces. However, it has shape-related limita-
tions of leaf-nodes. Squarified Treemap [2] and Ordered 
Treemap [15] improved the shapes of rectangular subre-
gions, but still they do not guarantee their aspect ratios. 
Quantum Treemap and Bubblemaps [1] were recently 
proposed for the layout of icons or thumbnails when 
those aspect ratios are fixed. Ordered Treemap also 
claims the seamlessness of the representation time-
varying data, however, still it often yields much different 
layout results among the time-series data in some parts. 

Against authors propose techniques for representing 
hierarchical data as 2D nested structures, but 3D nested 
structures have been applied in some techniques. Infor-
mation cubes [13] is a 3D hierarchical data visualization 
approach, which positions data in nested semitransparent 
hexahedrons. H-BLOBS [16] is also a 3D hierarchical 
data visualization approach, positioning data in nested 
semitransparent isosurfaces. 
 

3. Extension of Data Jewelry Box 
 
 This section presents our hierarchical data visualization 
technique “Data Jewelry Box.” First part of the section 
introduces the overview of “Data Jewelry Box,” and then 
proposes its extension for seamless representation of 
time-varying data. 
 
3.1 Data Jewelry Box: A hierarchical data visu-
alization technique 

 
Authors have proposed a hierarchical data visualization 

technique “Data Jewelry Box,” especially useful for in-
teractively providing overviews of large-scale data [7, 8]. 
As shown in Figure 1, our technique represents the hier-
archy of input data as nested rectangles. In this figure 
painted dots denote leaf nodes, and gray rectangular bor-
ders denote non-leaf nodes. Bigger borders denote 
higher-levels of the hierarchy, and smaller ones denote 
lower-levels. Remark that the name of the technique just 
denotes the concept, and does not target photo-realistic 
representation of jewelry box itself. 
Figure 2 shows an illustration of the order of data layout 

in our technique. Our algorithm first packs icons (painted 
square dots in Figure 2) that denote leaf nodes, and then 
generates rectangles that enclose the icons to denote non-
leaf nodes. Similarly, it packs a set of rectangles that be-
long to higher levels, and generates the larger rectangles 
that enclose them. Repeating the process from the lowest 

level toward the highest level, the algorithm places all of 
the data onto the layout area. 

 

 
Figure 2 Order of the placing rectangles to rep-
resent the hierarchical data. Numbers in this fig-
ure denote the order of the process. 

Here, one non-leaf-node connects to several children 
nodes. They are represented as rectangular icons or bor-
ders, and should be packed inside a rectangular border. 
To calculate their positions, the algorithm places a set of 
rectangles one-by-one, while it satisfies the following two 
conditions: 
[Condition 1] Rectangles must be placed without over-
lapping each other. 
[Condition 2] Rectangles should be placed where the 
layout area occupied by the rectangles is minimized. 
  

 

Figure 3 Illustration of the rectangle packing al-
gorithm.  

The above placement is somewhat similar to packing 
problem, which is a famous computational geometry 
problem, and has been applied to various industry fields, 
such as VLSI circuit, paper patterns for clothes, and cut-
ting pattern of sheet metals for mechanical parts. Many of 
these problems apply optimization schemes for the mini-
mization of layout areas; however, our algorithm favors 
accelerating the rectangle packing process rather than en-
tirely minimizing the layout space. We therefore did not 
apply optimization schemes to find the configuration of 
rectangles. Our algorithm sorts the rectangles according 
to their areas, and places them on a display space in the 
sorted order, as shown in Figure 3. Here the algorithm 
used a heuristic to quickly find gaps and place the re-



maining rectangles in the gaps. The heuristic uses a trian-
gular mesh connecting centers of previously placed rec-
tangles. 
The algorithm refers to triangles in the order of their 

sizes, and generates several sampling points inside the 
triangles for the trial placement of a rectangle. If the rec-
tangle can be place without overlapping any previously 
placed rectangles at one of the sampling points and ex-
tending the display area, the algorithm decides to place 
the rectangle there. If there is no point that the rectangle 
can be placed without extending the display area, the al-
gorithm decides to place the rectangle where the exten-
sion of layout area is the smallest and no overlap is hap-
pen. References [7, 8] describe the algorithm in detail. 
 

3.2 Proposed extension of Data Jewelry Box for 
visualization of time-varying data 
 
  Figure 4 shows the concept of the extension of Data 
Jewelry Box algorithm. The extension uses “templates,” 
which describe positions of nodes of hierarchical data at 
the previous time step in a normalized coordinate. Given 
the next hierarchical data, the extension refers the tem-
plate while it calculates positions of nodes of the data, so 
that they are placed as similar as the previous data. Posi-
tions of previous data are translated into a normalized co-
ordinate so that all positions are within (-1,-1) to (1,1), 
since the size of layout area usually changes even if the 
next data is very similar to the previous data. 

 
Figure 4 Concept of the extension of “Data Jew-
elry Box.” 

  In addition to two conditions described in Section 3.1, 
the extension applies one more condition: 
[Condition 3]  Rectangles should be placed where it is 
enough close to the position described in the given tem-
plate. 
The extension places rectangles under the three condi-

tions. Similar to the original Data Jewelry Box algorithm, 
the extension places given rectangles one-by-one. While 
the trial placement of a rectangle, it refers triangles one-
by-one, and generates sampling points inside each trian-
gle. Follows are the procedure of placing rectangles by 
the extension. Reference [19] describes the algorithm in 
detail. 

 
3.2.1 Order of placing rectangles. Against original Data 
Jewelry Box places rectangles in the order of their area, 
as shown in Figure 5(left), the extension places as the fol-
lowing order: 
 
(1) The largest rectangle is first placed. 
(2) Other rectangles are placed one-by-one, in the order 

of closeness to the largest rectangle, which are calcu-
lated from positions described in a template. 

 
The above “adjacency-based order” prevents to yield un-
necessary gaps each other.  
 
3.2.2 Order of referring triangles. Against original Data 
Jewelry Box refers triangles in the order of their area, as 
shown in Figure 5(right), the extension refers them in the 
order of distances to the position of currently placing rec-
tangle described in a template. The order accelerates the 
discovery of adequate position of the rectangle. Our im-
plementation generates sample points on the lines con-
necting vertices and edges of the triangle, and where cur-
rently placing rectangle can touch with previously placed 
rectangle without yielding unnecessary gaps. Detail is de-
scribed in reference [19]. 
 

 
Figure 5 The extended Data Jewelry Box algo-
rithm. (Left) Order of placing rectangles. (Right) 
Order of referring triangles. 

3.2.3 Evaluation of sampling points. While the trial 
placement of a rectangle at a sampling point, the exten-
sion decides that: 
(1) If the rectangle overlaps with at least one of previ-
ously placed rectangles, the rectangle never be placed 
there. 
(2) Otherwise, the extension calculates the value aD+bS, 
where a and b are user-defined constant values, D is the 
distance between the sampling point in the normalized 
coordinate and the position of the rectangle described in 
the template, and S is the layout area after the placement 
of the rectangle. After trying the placement with sampling 
points, the extension decides to place the rectangle where 
aD+bS is minimum. 



 Generally aD+bS values increase while referring trian-
gles in the above order. It means that the extension can 
skip many of distant triangles to refer. 
 

 

Figure 6 Example of display layout by the origi-
nal and the extended Data Jewelry Box algo-
rithm. (Left) A result for the data at the previous 
time step. (Right) Two results for the data at the 
next time step. 

3.2.4 Example. Figure 6 shows the example of hierarchi-
cal data visualization by the original and extended Data 
Jewelry Box algorithm. Left image represents the data at 
the previous time step, and right two images represent the 
data at the next time step. The next data is very similar to 
the previous data, except just two nodes are added from 
the previous data. The original algorithm calculates the 
display layout without referring the result for the previous 
data, and consequently it may yield much different layout 
though the two data is quite similar. The extended algo-
rithm refers the layout for previous data as a template, 
and yields very similar layout for the next data. 
 
4. Visualization of distributed processes by 
extended Data Jewelry Box 
 
This section describes the implementation of and ex-

periments with the visualization of distributed processes. 
We implemented it on OGSA. First part of the section de-
scribes the architecture of our implementation. Next part 
describes about the parallel meshing system, an applica-
tion we executed on the architecture. Final part describes 
some examples and results. 
 
4.1 Architecture of the visualization of distrib-
uted processes 
 

 

Figure 7 Architecture of visualization of distrib-
uted processes on OGSA. 

Figure 7 shows the architecture of our implementation. 
The client program first creates the application portal in-
stance and sends a set of processes to the portal instance. 
The portal instance then creates several application in-
stances on several servers, and sends the processes to the 
application instances. The portal instance also creates the 
visualization instance on a Web server, and sends the 
URL of the image of the visualization results to the client 
program. The portal instance manages the status of the 
processes running the application instances, and fre-
quently sends the status of the processes to the visualiza-
tion instance. The visualization instance also frequently 
generates images of the visualization results. Our imple-
mentation generates the images in the scalable vector 
graphics (SVG) format so that users can display them on 
Web browsers. 
The features of the architecture are as follows: 

[Simple client programming] In this implementation a 
client program just sends all of the processes to a single 
portal instance and receives all the results from the portal 
instance. It does not need to consider the parallelization. 
[Remote process monitoring] Since the visualization in-
stance outputs SVG format images, the distribution and 
status of the processes can be monitored from anywhere, 
since the client is reachable by the Web server on which 
the instance is running. 
[Independence of visualization instance] Since the 
visualization instance is separated from the application 
instances, it can easily be used for a variety of other ap-
plications. 



 
Figure 8 Data structure for the visualization of 
distributed processes.  

Currently, our implementation simply classifies proc-
esses into “assigned process” and “unassigned process,” 
and again classifies the assigned processes according to 
the instances which processes are assigned. The relation-
ships between the processes have hierarchical form and 
therefore this data can be the input data for Data Jewelry 
Box. Figure 8 shows the data structure of processes for 
the visualization.  
 
4.2 Application: Parallel Meshing System 
 
We applied meshing technique as an application of the 

visualization of distributed processes. Meshing is a geo-
metric technique to finely divide input geometric regions 
into small pieces of triangular or quadrilateral elements. It 
is mainly used for Computer Graphics (CG), Computer 
Aided Design (CAD), and Computer Aided Engineering 
(CAE). Figure 9 shows an example of meshes used in 
CAE. 

 

Figure 9 Examples of meshes. (Left) Input ge-
ometry. (Right) Output quadrilateral mesh. (cop-
ied from reference [6].) 

Computational dynamics approach used in CAE is very 
sensitive to the results of meshing. To obtain adequate so-
lutions in a reasonable computation time, the density and 
directionality of meshes should be controlled properly, 
and the shapes of elements should be nearly equi-angle. 
Due to the difficulties of these requirements, the automa-
tion of the meshing process is complicated. 

One of the authors has proposed physically-based mesh-
ing techniques that automate the meshing process [14, 
18]. The techniques have realized nearly-full automation 

of meshing procedures; however, its computation cost 
may be a bottleneck. The input geometry shown in Figure 
9 consists of hundreds of curved surfaces, and our im-
plementation needs several minutes to generate mesh all 
the surfaces by a PC with 1GHz CPU. In the design 
analysis phase for large manufactured products such as 
automobiles, airplanes, and electric generators hundreds 
or thousands of mechanical parts are often meshed at the 
same time. If the above physically-based meshing tech-
nique is applied to the CAD models of such large prod-
ucts, it will take about one day to mesh all the mechanical 
parts using one CPU. Parallelization of the automated 
meshing techniques is therefore important for time effi-
cient analysis. 

We implemented the physically-based meshing tech-
nique as application instances shown in Figure 7. In our 
implementation the client program sends a set of geomet-
ric data to the portal service, and receives the meshing re-
sults from the service. The portal service sends the geo-
metric data to meshing service instances one-by-one, and 
receives the meshing results from the instances. Here, we 
believe that the computation times of meshing parts are 
estimated by a function of number of vertices, and total 
computation time is approximately minimized by sending 
the parts in the order of the estimated computation time of 
each part. Our implementation roughly forecasts the num-
ber of vertices vN  before the meshing process begins. 

The implementation calculates 2/ lAN v = , where A  is 
the area of a part is, and l  is the expected length of edges 
of the output mesh. After sorting all the parts according to 

vN , our implementation sends the parts to the meshing 
instances in the sorted order.  
 
4.3 Example 
 
Figure 10 shows an example of 6 snapshots of the visu-

alization. The example represents processes as bars, and 
their classifications by gray borders. The client program 
sends 80 mechanical parts to the portal instance, and the 
80 processes are assigned to 4 meshing instances. The 
current implementation of the visualization instance re-
freshes the image every 10 seconds. It is possible to re-
fresh the image more frequently, but every 10 seconds is 
most comfortable on our environment because our current 
SVG viewer often refreshes the image slowly. It simply 
colors the bars according to the classifications, and calcu-
lates heights according to the computation times. The 
blue bars at the left denote unassigned processes, and 
other bars on the right side denote assigned processes. 
The snapshots show that processes are gradually assigned 
to the 4 meshing instances. They also represent how 
many processes each instances has, and how much com-



putation time each process takes. Layouts among the 
snapshots are very similar by the effort of the extended 
algorithm. 
 

 

Figure 10 Example of visualization of distributed 
processes. 

 
4.4 Extension for multiple clients 
 
Section 4.1 described the architecture for the visualiza-

tion of processes sent from a single client. This section 
describes the extension of the architecture for the visuali-
zation of processes sent from multi clients. 
Figure 11 shows the overview of the extended architec-

ture. The scenario of this architecture is as follows: First, 
clients send requests to the parent portal service with the 
ID or name of the application they want to run. Receiving 
a request from a client, the parent portal creates an in-
stance of specified application portal, and returns the 
URL of the visualization results image to the client. The 
applications portal then creates several application in-
stances, and distributes the processes into the instance. 
The application portal also sends the status of their proc-
esses to the visualization instance. The visualization in-
stance frequently generates images of the status visualiza-
tion, and the clients frequently access the images to moni-
tor the processes of the whole distributed computing en-
vironment. Also, processes can be categorized according 
to user-specified attributes, such as users, servers, in-
stances, applications, so the visualization instance can 
provide various views for various purposes of the process 
visualization. This extension will help system designers 
optimize the configurations of distributed systems, and 
help application users to effectively utilize the computa-
tion resources. 

 

Figure 11  Extended architecture for visualiza-
tion of processes sent from multi clients. 

 

Figure 12 Example of visualization of processes 
sent from 4 clients. 

Figure 12 shows an example of visualization of proc-
esses by the extended architecture. In this example 4 cli-
ents send sets of processes, and they are distributed to 4 
instances. Colors of bars denote clients, and heights of 
bars denote the computation time. Bars in the lower part 
of the figure denote unassigned processes. Bars in the up-
per part are divided into four rectangular regions which 
represent instances. This figure denotes that the blue cli-
ent has sent the most number of processes, and the num-
ber of remaining processes is also the largest. The red cli-
ent has sent the least number of processes, but its each 
process is somewhat heavy. Load balance between 4 in-
stances does not look even, so system designers should 
think of utilization of computer resources. 
 
 5. Conclusion 
 



This paper proposed the extension of Data Jewelry Box 
algorithm for seamless representation of time-varying hi-
erarchical data. The extension uses “templates,” which 
describes positions of nodes of hierarchical data at the 
previous time step. By referring the templates the exten-
sion calculates very similar display layout of hierarchical 
data at the next time step. 
This paper also presented architecture of visualization of 

distributed processes using the extended Data Jewelry 
Box algorithm. We implemented the architecture on 
OGSA, and used a parallel meshing as an application of 
the visualization technique. This paper showed examples 
of the visualization. 
This work is still prototype level, and we are thinking of 

the following future topics: 
[Experiments of scalability] Presented visualization 
technique can provide a representation of large-scale and 
deeply-nested hierarchical data that includes thousands of 
leaf nodes. We would like to confirm the scalability of 
the visualization with thousands of processes in a real dis-
tributed computing environment. 
[Improvement of packing algorithm] Minimization of 
layout areas is important for scalability of the visualiza-
tion technique, but examples of extended algorithm, 
shown in Figure 11 and Figure 13, do not look nearly 
minimize the areas. It is a complicated problem to satisfy 
both scalability and similarity, and its improvement 
should be a future discussion. 
 [Variety of representations] Our implementation sim-
ply classifies processes according to instances, colors the 
bars according to classifications, and calculates heights 
according to the computation times. However, other kinds 
of criteria, such as usage of memory and disk space, 
could be applied to the classification of processes and the 
calculations of colors and heights. Also, the current im-
plementation represents processes as bars, but other data 
elements, such as users, CPUs, or disks, could be repre-
sented. We would like to study what kinds of representa-
tions are useful for the monitoring of distributed comput-
ing systems. 
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