

Visualization of Distributed Processes Using

“Data Jewelry Box” Algorithm

Yumi Yamaguchi Takayuki Itoh
IBM Research, Tokyo Research Laboratory

{yyumi, itot}@trl.ibm.com

Abstract
Visualization of distributed processes is useful for the man-

agement of large-scale distributed computing systems. Reactiv-
ity and scalability are especially important requirements for
such visualization of distributed processes. We have proposed
the visualization technique "Data Jewelry Box" algorithm,
which satisfies both of above requirements. The technique can
be applied for the visualization of distributed processes, how-
ever, the algorithm has a problem that may yield much different
data layouts even among very similar datasets. This is a serious
issue for the seamless visualization of time-varying data.
 To solve the problem, we propose the extension of "Data Jew-
elry Box" algorithm. The extension places data elements refer-
ring positions of the previous data layout, so that the extension
can yield similar layouts among similar datasets. This paper in-
troduces the extended algorithm, and proposes the visualization
system for distributed computing systems using the extended al-
gorithm.

1. Introduction

Visualization of distributed computing systems is impor-

tant for the purposes of management and planning of the
systems. Actually, some monitoring systems for distrib-
uted environments, including OpenView by Hewlett
Packard [12], became popular because of their conven-
ience. Some novel distributed computing architecture,
such as the Open Grid Services Architecture (OGSA) [5,
17], will allow users to freely utilize computer resources
rather than existing distributed systems, because of the
capability of flexible creation of service instances. This
means that usage of distributed computing resources may
be more complicated when such architectures become
more popular. We therefore think that real-time visualiza-
tion of distributed processes on such architectures will be
important for the purpose of management and planning of
computer resources.
We assume that satisfaction of the following require-

ments is desirable for the visualization of distributed
processes:

[Requirement 1: Reactivity] Distribution of processes
generally changes second-by-second. It is important to
very quickly represent the distribution for real-time moni-
toring of distributed computing systems.
[Requirement 2: Scalability] Parallel application may
distribute thousands of processes on large-scale distrib-
uted computing systems. To monitor the overall behavior
of the parallel computation, it is desirable to represent all
of thousands of processes in one display. In other words,
it is desirable to reduce the occupancy of display layout
areas.
[Requirement 3: Hierarchy] Above thousands of proc-
esses can be categorized according to several attributes,
such as CPUs, users, and applications. The processes can
be therefore arranged as hierarchical data according to the
categorization. Hierarchical data visualization techniques
are therefore useful for the visualization of distributed
processes.
[Requirement 4: Similarity] Hierarchical data formed
by above categorization usually slightly vary while a
short time step. In other words, two hierarchical data
while a short time step are usually very similar. It is de-
sirable that visualization technique generates very similar
images between very similar data for the seamless repre-
sentation of time-sequence of the data.

Figure 1 Example of hierarchical data visualiza-
tion by Data Jewelry Box.

 We have proposed Data Jewelry Box [7, 8], a visualiza-
tion technique for providing overviews of large-scale hi-
erarchical data. As shown in Figure 1, Data Jewelry Box

represents hierarchical data as nested rectangles. It repre-
sents leaf-nodes as icons, and non-leaf-nodes as nested
rectangular borders. The technique satisfies requirements
1, 2, and 3, since it calculates display layout of thousands
of nested nodes in one second or so. However, it has a
bottleneck for requirement 4, since it sometimes yields
very different display layout results among very similar
datasets.
This paper proposes an extension of Data Jewelry Box

algorithm [19] that improves the similarity among time-
series data. Given the display layout of previous data, it
calculates positions of icons and rectangular borders in a
normalized coordinate. Let us call the table of the posi-
tions “template.” By referring the template, the extension
calculates similar display layout for a similar data. It is
especially useful for seamless representation of slightly
time-varying hierarchical data.
This paper also presents an implementation of the visu-

alization of distributed processes using the extension of
Data Jewelry Box algorithm. The implementation sup-
poses that a client application first has a set of processes,
and then sends all the processes to a service working on a
server. We call this service the “portal” in this paper. Re-
ceiving the set of processes, the parent server creates sev-
eral service instances and assigns the processes to the in-
stances. After performing the processes, the instances re-
turn the results of the processes to the portal. Finally, the
portal returns the collection of results to the client appli-
cation. During this procedure, the portal manages the
status of all the processes, and constructs a hierarchical
data structure consisting of all of the processes. The im-
plementation frequently updates the hierarchical data, and
Data Jewelry Box algorithm frequently renders the data
as Scalable Vector Graphics (SVG) image files.
In this paper we used a parallel meshing system as the

application of the presented visualization technique.
Meshing is a geometric technique that finely divides input
geometric regions into small pieces of triangular or quad-
rilateral elements. Large-scale manufacturing products
usually consist of hundreds or thousands of mechanical
parts, and it is often necessary to mesh the geometries of
such enormous numbers of parts. Parallelization of the
meshing process is therefore important in such product
manufacturing fields. We implemented the meshing sys-
tem under OGSA, and monitor the meshing processes by
using our visualization technique.

2. Related work

2.1 Distributed processes on Open Grid Services
Architecture

 Visualization of distributed processes presented in this
paper has been implemented on OGSA [5, 17], which is
the novel architecture that integrates Grid Computing
technologies by combining Web Services mechanisms.
Grid Computing is a distributed computing infrastructure
that enables transparent access to and sharing of hetero-
geneous computing resources and software components
across distributed users and environments. Reference [4]
defined properties of key connectivity, resource, and col-
lective protocols to realize these features of Grid Com-
puting. Web Services is a framework that enables remote
and automatic execution of software components via the
Internet. OGSA enables the flexible utilization of com-
puting resources of Grid infrastructure by applying inter-
faces similar to Web Services. Here, OGSA defines the
open software components as “Grid service,” and tran-
siently working software components as “Grid service in-
stances.” OGSA has been proposed to provide mecha-
nisms for registering and discovering Grid Services, and
for creating and executing Grid service instances.
A typical scenario using OGSA is as follows: Factory

services for creating Grid service instances are first de-
ployed on Web servers. Programs call the factory services
to create the instances, and then call functions of the cre-
ated instances to execute the target services.
The above mechanism allows software developers to

flexibly control securities and manage distributed com-
puter resources rather than the earlier Grid technologies.
In the other word, it is possible that usage of computer re-
sources and software services will be more complicated,
because the service instances can be freely created on ar-
bitrary computer resources. Behavior of systems may of-
ten be very different from what system engineers ex-
pected, and therefore monitoring of the systems will be
important. That is the main reason why we are focusing
on the visualization of distributed processes on OGSA.

2.2 Existing hierarchical data visualization meth-
ods

 Hierarchical data visualization is a hot topic in visualiza-
tion research, and actually many techniques have been re-
cently presented.

Tree representation is the most popular hierarchical
data visualization technique, used in many programs such
as famous file system viewers. Several variations, such as
the Hyperbolic Tree [11], Cone Tree [3], and Fractal
Views [10], have been described for the interactive visu-
alization of large-scale hierarchical data sets. It is also
suitable for visualizing the connectivity among nodes.
Carriere et al. represented all parts of large-scale hierar-
chical data by Cone Tree in [3]. It provides a good over-
view of large-scale data; however, their result contains
sparse regions.

Treemap [9], which represents hierarchical data in a
manner like nested column charts, is a well-known space-
filling approach for hierarchical data visualization. The
space-filling approach is especially useful for the repre-
sentation of statistics, and overview of the data in com-
pact display spaces. However, it has shape-related limita-
tions of leaf-nodes. Squarified Treemap [2] and Ordered
Treemap [15] improved the shapes of rectangular subre-
gions, but still they do not guarantee their aspect ratios.
Quantum Treemap and Bubblemaps [1] were recently
proposed for the layout of icons or thumbnails when
those aspect ratios are fixed. Ordered Treemap also
claims the seamlessness of the representation time-
varying data, however, still it often yields much different
layout results among the time-series data in some parts.

Against authors propose techniques for representing
hierarchical data as 2D nested structures, but 3D nested
structures have been applied in some techniques. Infor-
mation cubes [13] is a 3D hierarchical data visualization
approach, which positions data in nested semitransparent
hexahedrons. H-BLOBS [16] is also a 3D hierarchical
data visualization approach, positioning data in nested
semitransparent isosurfaces.

3. Extension of Data Jewelry Box

 This section presents our hierarchical data visualization
technique “Data Jewelry Box.” First part of the section
introduces the overview of “Data Jewelry Box,” and then
proposes its extension for seamless representation of
time-varying data.

3.1 Data Jewelry Box: A hierarchical data visu-
alization technique

Authors have proposed a hierarchical data visualization

technique “Data Jewelry Box,” especially useful for in-
teractively providing overviews of large-scale data [7, 8].
As shown in Figure 1, our technique represents the hier-
archy of input data as nested rectangles. In this figure
painted dots denote leaf nodes, and gray rectangular bor-
ders denote non-leaf nodes. Bigger borders denote
higher-levels of the hierarchy, and smaller ones denote
lower-levels. Remark that the name of the technique just
denotes the concept, and does not target photo-realistic
representation of jewelry box itself.
Figure 2 shows an illustration of the order of data layout

in our technique. Our algorithm first packs icons (painted
square dots in Figure 2) that denote leaf nodes, and then
generates rectangles that enclose the icons to denote non-
leaf nodes. Similarly, it packs a set of rectangles that be-
long to higher levels, and generates the larger rectangles
that enclose them. Repeating the process from the lowest

level toward the highest level, the algorithm places all of
the data onto the layout area.

Figure 2 Order of the placing rectangles to rep-
resent the hierarchical data. Numbers in this fig-
ure denote the order of the process.

Here, one non-leaf-node connects to several children
nodes. They are represented as rectangular icons or bor-
ders, and should be packed inside a rectangular border.
To calculate their positions, the algorithm places a set of
rectangles one-by-one, while it satisfies the following two
conditions:
[Condition 1] Rectangles must be placed without over-
lapping each other.
[Condition 2] Rectangles should be placed where the
layout area occupied by the rectangles is minimized.

Figure 3 Illustration of the rectangle packing al-
gorithm.

The above placement is somewhat similar to packing
problem, which is a famous computational geometry
problem, and has been applied to various industry fields,
such as VLSI circuit, paper patterns for clothes, and cut-
ting pattern of sheet metals for mechanical parts. Many of
these problems apply optimization schemes for the mini-
mization of layout areas; however, our algorithm favors
accelerating the rectangle packing process rather than en-
tirely minimizing the layout space. We therefore did not
apply optimization schemes to find the configuration of
rectangles. Our algorithm sorts the rectangles according
to their areas, and places them on a display space in the
sorted order, as shown in Figure 3. Here the algorithm
used a heuristic to quickly find gaps and place the re-

maining rectangles in the gaps. The heuristic uses a trian-
gular mesh connecting centers of previously placed rec-
tangles.
The algorithm refers to triangles in the order of their

sizes, and generates several sampling points inside the
triangles for the trial placement of a rectangle. If the rec-
tangle can be place without overlapping any previously
placed rectangles at one of the sampling points and ex-
tending the display area, the algorithm decides to place
the rectangle there. If there is no point that the rectangle
can be placed without extending the display area, the al-
gorithm decides to place the rectangle where the exten-
sion of layout area is the smallest and no overlap is hap-
pen. References [7, 8] describe the algorithm in detail.

3.2 Proposed extension of Data Jewelry Box for
visualization of time-varying data

 Figure 4 shows the concept of the extension of Data
Jewelry Box algorithm. The extension uses “templates,”
which describe positions of nodes of hierarchical data at
the previous time step in a normalized coordinate. Given
the next hierarchical data, the extension refers the tem-
plate while it calculates positions of nodes of the data, so
that they are placed as similar as the previous data. Posi-
tions of previous data are translated into a normalized co-
ordinate so that all positions are within (-1,-1) to (1,1),
since the size of layout area usually changes even if the
next data is very similar to the previous data.

Figure 4 Concept of the extension of “Data Jew-
elry Box.”

 In addition to two conditions described in Section 3.1,
the extension applies one more condition:
[Condition 3] Rectangles should be placed where it is
enough close to the position described in the given tem-
plate.
The extension places rectangles under the three condi-

tions. Similar to the original Data Jewelry Box algorithm,
the extension places given rectangles one-by-one. While
the trial placement of a rectangle, it refers triangles one-
by-one, and generates sampling points inside each trian-
gle. Follows are the procedure of placing rectangles by
the extension. Reference [19] describes the algorithm in
detail.

3.2.1 Order of placing rectangles. Against original Data
Jewelry Box places rectangles in the order of their area,
as shown in Figure 5(left), the extension places as the fol-
lowing order:

(1) The largest rectangle is first placed.
(2) Other rectangles are placed one-by-one, in the order

of closeness to the largest rectangle, which are calcu-
lated from positions described in a template.

The above “adjacency-based order” prevents to yield un-
necessary gaps each other.

3.2.2 Order of referring triangles. Against original Data
Jewelry Box refers triangles in the order of their area, as
shown in Figure 5(right), the extension refers them in the
order of distances to the position of currently placing rec-
tangle described in a template. The order accelerates the
discovery of adequate position of the rectangle. Our im-
plementation generates sample points on the lines con-
necting vertices and edges of the triangle, and where cur-
rently placing rectangle can touch with previously placed
rectangle without yielding unnecessary gaps. Detail is de-
scribed in reference [19].

Figure 5 The extended Data Jewelry Box algo-
rithm. (Left) Order of placing rectangles. (Right)
Order of referring triangles.

3.2.3 Evaluation of sampling points. While the trial
placement of a rectangle at a sampling point, the exten-
sion decides that:
(1) If the rectangle overlaps with at least one of previ-
ously placed rectangles, the rectangle never be placed
there.
(2) Otherwise, the extension calculates the value aD+bS,
where a and b are user-defined constant values, D is the
distance between the sampling point in the normalized
coordinate and the position of the rectangle described in
the template, and S is the layout area after the placement
of the rectangle. After trying the placement with sampling
points, the extension decides to place the rectangle where
aD+bS is minimum.

 Generally aD+bS values increase while referring trian-
gles in the above order. It means that the extension can
skip many of distant triangles to refer.

Figure 6 Example of display layout by the origi-
nal and the extended Data Jewelry Box algo-
rithm. (Left) A result for the data at the previous
time step. (Right) Two results for the data at the
next time step.

3.2.4 Example. Figure 6 shows the example of hierarchi-
cal data visualization by the original and extended Data
Jewelry Box algorithm. Left image represents the data at
the previous time step, and right two images represent the
data at the next time step. The next data is very similar to
the previous data, except just two nodes are added from
the previous data. The original algorithm calculates the
display layout without referring the result for the previous
data, and consequently it may yield much different layout
though the two data is quite similar. The extended algo-
rithm refers the layout for previous data as a template,
and yields very similar layout for the next data.

4. Visualization of distributed processes by
extended Data Jewelry Box

This section describes the implementation of and ex-

periments with the visualization of distributed processes.
We implemented it on OGSA. First part of the section de-
scribes the architecture of our implementation. Next part
describes about the parallel meshing system, an applica-
tion we executed on the architecture. Final part describes
some examples and results.

4.1 Architecture of the visualization of distrib-
uted processes

Figure 7 Architecture of visualization of distrib-
uted processes on OGSA.

Figure 7 shows the architecture of our implementation.
The client program first creates the application portal in-
stance and sends a set of processes to the portal instance.
The portal instance then creates several application in-
stances on several servers, and sends the processes to the
application instances. The portal instance also creates the
visualization instance on a Web server, and sends the
URL of the image of the visualization results to the client
program. The portal instance manages the status of the
processes running the application instances, and fre-
quently sends the status of the processes to the visualiza-
tion instance. The visualization instance also frequently
generates images of the visualization results. Our imple-
mentation generates the images in the scalable vector
graphics (SVG) format so that users can display them on
Web browsers.
The features of the architecture are as follows:

[Simple client programming] In this implementation a
client program just sends all of the processes to a single
portal instance and receives all the results from the portal
instance. It does not need to consider the parallelization.
[Remote process monitoring] Since the visualization in-
stance outputs SVG format images, the distribution and
status of the processes can be monitored from anywhere,
since the client is reachable by the Web server on which
the instance is running.
[Independence of visualization instance] Since the
visualization instance is separated from the application
instances, it can easily be used for a variety of other ap-
plications.

Figure 8 Data structure for the visualization of
distributed processes.

Currently, our implementation simply classifies proc-
esses into “assigned process” and “unassigned process,”
and again classifies the assigned processes according to
the instances which processes are assigned. The relation-
ships between the processes have hierarchical form and
therefore this data can be the input data for Data Jewelry
Box. Figure 8 shows the data structure of processes for
the visualization.

4.2 Application: Parallel Meshing System

We applied meshing technique as an application of the

visualization of distributed processes. Meshing is a geo-
metric technique to finely divide input geometric regions
into small pieces of triangular or quadrilateral elements. It
is mainly used for Computer Graphics (CG), Computer
Aided Design (CAD), and Computer Aided Engineering
(CAE). Figure 9 shows an example of meshes used in
CAE.

Figure 9 Examples of meshes. (Left) Input ge-
ometry. (Right) Output quadrilateral mesh. (cop-
ied from reference [6].)

Computational dynamics approach used in CAE is very
sensitive to the results of meshing. To obtain adequate so-
lutions in a reasonable computation time, the density and
directionality of meshes should be controlled properly,
and the shapes of elements should be nearly equi-angle.
Due to the difficulties of these requirements, the automa-
tion of the meshing process is complicated.

One of the authors has proposed physically-based mesh-
ing techniques that automate the meshing process [14,
18]. The techniques have realized nearly-full automation

of meshing procedures; however, its computation cost
may be a bottleneck. The input geometry shown in Figure
9 consists of hundreds of curved surfaces, and our im-
plementation needs several minutes to generate mesh all
the surfaces by a PC with 1GHz CPU. In the design
analysis phase for large manufactured products such as
automobiles, airplanes, and electric generators hundreds
or thousands of mechanical parts are often meshed at the
same time. If the above physically-based meshing tech-
nique is applied to the CAD models of such large prod-
ucts, it will take about one day to mesh all the mechanical
parts using one CPU. Parallelization of the automated
meshing techniques is therefore important for time effi-
cient analysis.

We implemented the physically-based meshing tech-
nique as application instances shown in Figure 7. In our
implementation the client program sends a set of geomet-
ric data to the portal service, and receives the meshing re-
sults from the service. The portal service sends the geo-
metric data to meshing service instances one-by-one, and
receives the meshing results from the instances. Here, we
believe that the computation times of meshing parts are
estimated by a function of number of vertices, and total
computation time is approximately minimized by sending
the parts in the order of the estimated computation time of
each part. Our implementation roughly forecasts the num-
ber of vertices vN before the meshing process begins.

The implementation calculates 2/ lAN v = , where A is
the area of a part is, and l is the expected length of edges
of the output mesh. After sorting all the parts according to

vN , our implementation sends the parts to the meshing
instances in the sorted order.

4.3 Example

Figure 10 shows an example of 6 snapshots of the visu-

alization. The example represents processes as bars, and
their classifications by gray borders. The client program
sends 80 mechanical parts to the portal instance, and the
80 processes are assigned to 4 meshing instances. The
current implementation of the visualization instance re-
freshes the image every 10 seconds. It is possible to re-
fresh the image more frequently, but every 10 seconds is
most comfortable on our environment because our current
SVG viewer often refreshes the image slowly. It simply
colors the bars according to the classifications, and calcu-
lates heights according to the computation times. The
blue bars at the left denote unassigned processes, and
other bars on the right side denote assigned processes.
The snapshots show that processes are gradually assigned
to the 4 meshing instances. They also represent how
many processes each instances has, and how much com-

putation time each process takes. Layouts among the
snapshots are very similar by the effort of the extended
algorithm.

Figure 10 Example of visualization of distributed
processes.

4.4 Extension for multiple clients

Section 4.1 described the architecture for the visualiza-

tion of processes sent from a single client. This section
describes the extension of the architecture for the visuali-
zation of processes sent from multi clients.
Figure 11 shows the overview of the extended architec-

ture. The scenario of this architecture is as follows: First,
clients send requests to the parent portal service with the
ID or name of the application they want to run. Receiving
a request from a client, the parent portal creates an in-
stance of specified application portal, and returns the
URL of the visualization results image to the client. The
applications portal then creates several application in-
stances, and distributes the processes into the instance.
The application portal also sends the status of their proc-
esses to the visualization instance. The visualization in-
stance frequently generates images of the status visualiza-
tion, and the clients frequently access the images to moni-
tor the processes of the whole distributed computing en-
vironment. Also, processes can be categorized according
to user-specified attributes, such as users, servers, in-
stances, applications, so the visualization instance can
provide various views for various purposes of the process
visualization. This extension will help system designers
optimize the configurations of distributed systems, and
help application users to effectively utilize the computa-
tion resources.

Figure 11 Extended architecture for visualiza-
tion of processes sent from multi clients.

Figure 12 Example of visualization of processes
sent from 4 clients.

Figure 12 shows an example of visualization of proc-
esses by the extended architecture. In this example 4 cli-
ents send sets of processes, and they are distributed to 4
instances. Colors of bars denote clients, and heights of
bars denote the computation time. Bars in the lower part
of the figure denote unassigned processes. Bars in the up-
per part are divided into four rectangular regions which
represent instances. This figure denotes that the blue cli-
ent has sent the most number of processes, and the num-
ber of remaining processes is also the largest. The red cli-
ent has sent the least number of processes, but its each
process is somewhat heavy. Load balance between 4 in-
stances does not look even, so system designers should
think of utilization of computer resources.

 5. Conclusion

This paper proposed the extension of Data Jewelry Box
algorithm for seamless representation of time-varying hi-
erarchical data. The extension uses “templates,” which
describes positions of nodes of hierarchical data at the
previous time step. By referring the templates the exten-
sion calculates very similar display layout of hierarchical
data at the next time step.
This paper also presented architecture of visualization of

distributed processes using the extended Data Jewelry
Box algorithm. We implemented the architecture on
OGSA, and used a parallel meshing as an application of
the visualization technique. This paper showed examples
of the visualization.
This work is still prototype level, and we are thinking of

the following future topics:
[Experiments of scalability] Presented visualization
technique can provide a representation of large-scale and
deeply-nested hierarchical data that includes thousands of
leaf nodes. We would like to confirm the scalability of
the visualization with thousands of processes in a real dis-
tributed computing environment.
[Improvement of packing algorithm] Minimization of
layout areas is important for scalability of the visualiza-
tion technique, but examples of extended algorithm,
shown in Figure 11 and Figure 13, do not look nearly
minimize the areas. It is a complicated problem to satisfy
both scalability and similarity, and its improvement
should be a future discussion.
 [Variety of representations] Our implementation sim-
ply classifies processes according to instances, colors the
bars according to classifications, and calculates heights
according to the computation times. However, other kinds
of criteria, such as usage of memory and disk space,
could be applied to the classification of processes and the
calculations of colors and heights. Also, the current im-
plementation represents processes as bars, but other data
elements, such as users, CPUs, or disks, could be repre-
sented. We would like to study what kinds of representa-
tions are useful for the monitoring of distributed comput-
ing systems.

References
[1] Bederson B., PhotoMesa: a zoomable image browser using
quantum treemaps and bubblemaps, UIST 2001, pp. 71-80,
2001.
[2] Bruls D.M., Huizing K., Wijk J. J., Squarified Treemaps,
Data Visualization 2000 (joint Eurographics and IEEE TCVG
Symposium on Visualization), pp. 33-42, 2000.
[3] Carriere J., Kazman R., Research Paper: Interacting with
Huge Hierarchies beyond Cone Trees, IEEE Information Visu-
alization ’95, pp. 74-81, 1995.
[4] Foster I., Kesselman C., Tuecke S., The Anatomy of the
Grid: Enabling Scalable Virtual Organizations, International
Journal of High Performance Computing Applications, Vol. 15,
No. 3, pp. 200-222, 2001.

[5] Foster I., Kesselman C., Mick J. M., Tuecke S., The Physi-
ology of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration,
http://www.globus.org/research/papers.html.
[6] Inoue K., Itoh T., Yamada A., Furuhata T., and Shimada K.,
Face Clustering of a Large-scale CAD Model for Surface Mesh
Generation, Computer-Aided Design, Vol. 33, No 3., pp. 251-
261, 2001.
[7] Itoh T., Kajinaga Y., Ikehata Y., Yamaguchi Y., Data Jew-
elry Box: A Graphics Showcase for Large-Scale Hierarchical
Data Visualization, IBM Research, TRL Research Report,
RT0427.
[8] Itoh T., Kajinaga Y., Ikehata Y., Data Jewelry Box: A
Graphics Showcase for Large-Scale Hierarchical Data Visuali-
zation, IPSJ Graphics & CAD Research Report, 2001-CG-104,
2001. (In Japanese)
[9] Johnson B., Shneiderman B., Tree-Maps: A Space Filling
Approach to the Visualization of Hierarchical Information
Space, IEEE Visualization ’91, pp. 275-282, 1991.
[10] Koike H., Fractal Views: A Fractal-Based Method for Con-
trolling Information Display, ACM Transactions on Information
Systems, 13, 3, pp. 305-323, 1995.
[11] Lamping J., Rao R., Pirolli P.., The Hyperbolic Browser: A
Focus+context Technique for Visualizing Large Hierarchies,
Journal of Visual Languages and Computing, Vol. 7, No. 1, pp.
33-55, 1996.
[12] OpenView, http://www.openview.hp.com/
[13] Rekimoto J., The Information Cube: Using Transparency in
3D Information Visualization, Third Annual Workshop on In-
formation Technologies & Systems, pp. 125-132, 1993.
[14] Shimada K., Yamada A., Itoh T., Anisotropic Triangulation
of Parametric Surfaces via Close Packing of Ellipses, Interna-
tional Journal on Computational Geometry & Applications,
Vol. 10, No. 4, pp. 417-440, 2000.
[15] Shneiderman B., Wattenberg M.., Ordered treemap layouts,
IEEE Information Visualization Symposium 2001, pp. 73-78,
2001.
[16] Sprenger T. C., Brunella R., Gross M. H., H-BLOB: A Hi-
erarchical Visual Clustering Method Using Implicit Surfaces,
IEEE Visualization 2000, pp. 61-68, 2000.
[17] Tuecke S., Czajkowski K., Foster I., Frey J., Graham S.,
Kesselman C., Grid Service Specification,
http://www.globus.org/research/papers.html.
[18] Viswanath N., Shimada K., Itoh T., Quadrilateral Meshing
with Anisotropy and Directionality Control via Close Packing
of Rectangular Cells, 9th International Meshing Roundtable, pp.
227-238, 2000.
[19] Yamaguchi Y., Itoh T., Data Jewelry Box II: A Graphics
Showcase for Large-Scale Data Visualization Using Templates
of Position Information, IPSJ Graphics & CAD Research Re-
port, 2002-CG-108, 2002. (In Japanese)

