
HeiankyoView: Orthogonal Representation of
Large-scale Hierarchical Data

Takayuki ITOH, Koji KOYAMADA

Academic Center for Computing and Media Studies, Kyoto University
itot@computer.org, koyamada@kudpc.kyoto-u.ac.jp

Abstract. Visualization is very useful for various large-scale computing fields. One of the authors has reported a

hierarchical data visualization technique, and applied it to various large-scale computing data including large-scale
Web sites, but also for data mining results, Web search queries, network intrusion detection results, and distributed
processes. This paper presents the new hierarchical data visualization technique, HeiankyoView, which can be also
applied to various large-scale computing fields. It places data items of input data while it packs the items as many as
possible in small display areas, and aligns the items along X-axis and Y-axis of the display area. The technique
represents nodes of hierarchical data as a set of rectangles, which are parallel to X-axis and Y-axis. Here the
technique orthogonally divides the display area by extension lines of edges of previously placed rectangles. By
referring the grid-like subspaces of the display area, the technique quickly finds the adequate positions to place
remaining rectangles.

1. Introduction

There are so many kinds of hierarchical data in our
daily life, such as file systems of computers, human
resources organization of large companies, and
category-based Web sites. Visualization of hierarchical
data is therefore a very active research topic. Some of
the visualization techniques first represent higher-level
portions of the hierarchical data, and provide user
interfaces to interactively explore lower-level portions.
Others represent the overview of the data by placing all
portions into display spaces.

One of the author proposed Data Jewelry Box
[Ito03][Yam03], which represents large-scale
hierarchical data as a set of nested rectangles. The
technique represents leaf-nodes as colored icons, and
non-leaf-nodes as rectangular borders.

Figure 1 shows an example of visualization of a Web
site using Data Jewelry Box. Forming thousands of
Web pages as hierarchical data according to directory
structure, the technique places all icons denoting the
Web pages onto one display space. As shown in this
example, the technique is suitable for representation of
large number of leaf-nodes in one display space. The
technique has been applied to various large-scale
computing fields, not only for large-scale Web sites, but
also for data mining results, Web search queries,

network intrusion detection results, and distributed
process monitoring [Yam03].

This paper presents the new hierarchical data
visualization technique, HeiankyoView. It represents
hierarchical data as a set of nested rectangles, similar to
Data Jewelry Box. It places data items of input data
while it packs the items as many as possible in small

 Figure 1. Examples of the representation of
hierarchical data. Leaf-nodes of this data denote
the Web pages of a Web site, and the
non-leaf-nodes of the data denote the directory
hierarchy. The leaf-nodes are colored according to
their last update time, and given heights according
to their access frequencies.

display areas, and it orthogonally aligns the items.
Conditions for placing the data items are quite similar
to those of Data Jewelry Box; however, algorithm of
HeiankyoView is quite different from Data Jewelry
Box, and therefore visualization results of
HeiankyoView are also much different from ones of
Data Jewelry Box.

The name of the proposed technique comes from
Heiankyo, an ancient palace in Japan. It is well-known
that land arrangement of Heiankyo was very
well-organized by grid-like blocking. Since our
orthogonal representation looks like the land
arrangement of Heiankyo, we named our technique
HeiankyoView.

2. Related Works
 This section provides a brief survey of existing
hierarchical data visualization techniques.

2.1 Tree-based visualization

Tree representation is the most popular hierarchical
data visualization technique, used in many programs
such as well-known file system viewers. Several
variations, such as the Hyperbolic Tree [Lam96], Cone
Tree [Car95], Fractal Views [Koi95], have been
described for the interactive visualization of large-scale
tree data sets. These techniques are suitable for
visualizing the higher-level data first, and then
exploring the lower-level data according to users’
choices. They are also suitable for visualizing the
connectivity among nodes. Some of such works tried to
display thousands of nodes, but results of these studies
do not always efficiently use display spaces, because
they often occur sparse layouts.

2.2 Space-filling visualization

A Treemap [Joh01], which represents hierarchical
data in a manner like nested column charts, is a
well-known space-filling approach for hierarchical data
visualization. The space-filling approach is especially
useful for representations appropriate to visualize
quantitative data attributes, as opposed to seeing
connectivity, for which tree-based techniques may be
more appropriate. This approach is also suitable for
representing all of the data in a compact display space.
The technique presented in this paper is close to

Treemap in terms of providing overviews of the data.
Recently several improved Treemaps techniques

have been proposed. Quantum treemap [Bed02] is a
very close work to our technique because it is suitable
for the representation of categorized data items as icons.
As described in [Bed02], the stable layout of dynamic
data is a common future research direction of
Treemaps.

2.3 Semitransparent 3D visualization

Information cubes [Rek93] is a 3D hierarchical data
visualization approach, which positions data in nested
semitransparent hexahedrons. H-BLOBS [Spr00] is
also a 3D hierarchical data visualization approach,
positioning data in nested semitransparent isosurfaces.
These approaches have limitations in that they require a
graphics environment supporting 3D semitransparent
rendering, and in that users’ need 3D manipulation
skills. Also, the computation times for data layout are
not clearly mentioned in their papers.

2.4 Data Jewelry Box
Data Jewelry Box [Ito03] represents hierarchical data

as nested rectangles, as shown in Figure 1. It places
data items starting from the lowest level of the
hierarchical data, and repeats the placement towards the
top level. HeiankyoView applies the same
representation and processing flow as described in
Section 3.

To efficiently place the data items, Data Jewelry Box
searches for gaps to place the data items by referring
Delaunay triangular meshes connecting centers of
previously placed data items.
Recently it has been extended for the stable

representation of time-varying hierarchical data
[Yam03]. The extension is one of the main advantages
of Data Jewelry Box against other existing hierarchical
data visualization techniques. The extension refers the
previous display layout results, and places the data
items so that these positions are enough close to the
previous positions.

3. Hierarchical Data Visualization by
Nested Rectangles

Similar to Data Jewelry Box, HeiankyoView also

represents leaf-nodes as colored icons, and
non-leaf-nodes as rectangular borders. HeiankyoView
first tightly packs icons in rectangular regions, and then
repeats the packing of rectangular regions to represent
the hierarchy.

Figure 2 shows an illustration of the order of
hierarchical data layout of HeiankyoView. The
technique first packs icons (painted square dots in
Figure 2) that denote leaf nodes, and then encloses
them by rectangular borders that denote non-leaf nodes.
Similarly, it packs a set of rectangles that belong to
higher levels, and generates the larger rectangles that
enclose them. Repeating the process from the lowest
level toward the highest level, the technique places all
of the data items onto the layout area.

Treating icons, thumbnails, and rectangular borders
as a set of rectangles, HeiankyoView places the
rectangles tightly inside a small rectangular area, and
encloses them by a bigger rectangular border that
denotes the parent non-leaf node.

If all nodes in a level are leaf-nodes and their sizes
and aspect ratios are not specified, our implementation
assumes that the all nodes are represented by equal
squares. In this case the implementation places them
onto an orthogonal regular grid, without using the
rectangle packing algorithm. When the level contains

ln nodes, the implementation calculates the rounded
value of ln , and sets the horizontal or vertical
number of squares to that value.

If the sizes and aspect ratios of the rectangles in a
level vary, the technique needs more robust rectangle
packing algorithms. Sections 4 present the detail of

rectangle packing algorithm applied to HeiankyoView.

4. Rectangle Layout by Grid-like
Subdivision of Display Spaces
4.1 Overview

As mentioned in Section 3, HeiankyoView treats
icons, thumbnails, and rectangular borders as a set of
rectangles. Given the set of rectangles under a
non-leaf-node, HeiankyoView places them onto the
display space one-by-one. Here, it places the rectangles
while it satisfies the following two conditions:

[Condition 1] It places rectangles so that they do not
overlap each other.
[Condition 2] It tries to place rectangles where it
minimizes the display area after the placement of each
rectangle.

This section describes the algorithm for placing

rectangles. Pseudo-code of the presented algorithm is

shown in Figure 7. Remark that the algorithm does not

entirely minimize the display areas, but just finds

configurations that archive local minimum display

areas. We think that such local minimum configurations

are sufficient for the purpose of HeiankyoView.

4.2 Grid-like subdivision of display spaces
Suppose that several rectangles have been already

placed onto a display space. HeiankyoView maintains

the occupancy of rectangles in the display space by

grid-like subdivision, as shown in Figure 3. It divides

the display space by extension lines of edges of

previously placed rectangles. It maintains if each

rectangular subspace is already filled by placed

rectangles or not. Figure 3(right) denotes that painted

subspaces have been already filled by placed rectangles,

and others are not filled.

Supposing that the display space is divided to p layers

along x-axis, and q layers along y-axis, this paper

denotes the sorted x-coordinates of the extension lines

as 0x to px , and the sorted y-coordinates of the

extension lines as 0y to qy . HeiankyoView

traverses p×q subspaces to find adequate positions to

Figure 2. Processing flow of HeiankyoView. It
first places data items in the lowest level, and then
repeats the placement towards the top level.

place remaining rectangles.

4.3 Traverse of candidate positions to place

rectangles
To decide a position of remaining rectangles,

HeiankyoView evaluates multiple candidate positions

while it traverses subspaces of the display space, and

places them at the optimum positions according to the

evaluation results.

HeiankyoView defines the order of traversing

subspaces as follows. First it specifies the subspace that

encloses the center of the display space. This paper

describes the subspace as [s,t], if it is s-th along x-axis,

and t-th along y-axis. Here, x-coordinates of four

corners of the subspace [s,t] are sx and 1+sx , and

y-coordinates of them are ty and 1+ty . When the

center of the display space is enclosed by the subspace

[s,t], HeiankyoView first traverses it, and then traverses

others in the spiral order, as shown in Figure 4(left).

For example, it traverses [s-1,t-1] to [s-1,t+1], and then

traverses [s-1,t+1] to [s+1,t+1], and repeats similar

traverses.

This spiral order makes faster to find positions where

satisfies both conditions 1 and 2, because it avoids to

extend the display area by placing rectangles interior

the display space. Therefore we think that the spiral

order accelerates the algorithm.

While traversing subspaces in the spiral order,

HeiankyoView tries to place rectangles at four

candidate positions in each subspace. It determines if

each candidate position satisfies [condition 1] by

overlap check with already placed rectangles. Also, it

determines if each candidate position satisfies

[condition 2] by calculating the extension of display

area by the placement of the rectangles.

HeiankyoView calculate positions of four candidates

according to the following procedure. Let us denote the

width and height of currently placing rectangle as (w,h),

x-coordinates of vertices of the subspace [s,t] as sx

and 1+sx , and y-coordinates of vertices of the

subspace as ty and 1+ty . HeiankyoView then tries

to place the current rectangle so that one of the vertices

of the rectangle locates at one of the following four

candidate positions. Here, let us describe two

x-coordinates and two y-coordinates of four vertices of

a rectangle as],,,[dcba yyxx . As shown in Figure

4(right), coordinates of four vertices of the candidates

are described as follows:

candidate 1:)](,),(,[hyywxx ttss ++

candidate 2:)](,,),[(11 hyyxwx ttss +− ++

candidate 3:]),(),(,[11 ++ −+ ttss yhywxx

candidate 4:]),(,),[(1111 ++++ −− ttss yhyxwx

4.4 Evaluation of candidate positions
Let us denote one of the candidate placement of the

rectangle shown in Section 4.3 as],,,[dcba yyxx .

Here HeiankyoView specifies the integer values

lkji ,,, that satisfy the following equations

representing the relationship between the four values

dcba yyxx ,,, and positions of vertices of subspaces:

Figure 4. (left) Spiral order of traversing subspaces.
(right) Four candidate positions in a subspace.

[s,t]

[candidate 1] [candidate 2]

[candidate 3] [candidate 4]

),(ts yx
),(1+ts yx

),(1 ts yx +

),(11 ++ ts yx

),(00 yx

),(0 qyx),(qp yx

),(0yxp

Figure 3. (left) Already placed rectangles. (right)
Grid-like subdivision of a display space by
extension lines of edges of already placed
rectangles.

1+≤≤ iai xxx ,

1+≤≤ jbj xxx ,

1+≤≤ kck yyy ,

1+≤≤ ldl yyy .

Figure 5(left) shows the relationship between above

values. HeiankyoView then determines if at least one of

the subspaces [i,k] to [j,l] have been filled by

previously placed rectangles. If there is at least one

filled subspace, HeiankyoView determines that the

candidate placement cannot satisfy [condition 1], and

tries to place the rectangle at other candidate positions.

Otherwise, it calculates the extension of display area

due to the placement of the rectangle. If the placement

does not extend the display area, HeiankyoView

decides to place the rectangle there. If the extension of

the display area is not zero but smaller then any of

previously tried candidate positions, HeiankyoView

registers the candidate position as the temporal position.

If there is no position that satisfies [condition 1] and

does not extend the display area, HeiankyoView

decides to place the rectangle at the temporal position.

Deciding the position of the current rectangle,

HeiankyoView subdivides the subspaces by the

extension lines of the rectangle, as shown in Figure

5(right).

5. Example

Figure 6 is an example of hierarchical data

visualization by HeiankyoView. The represented data

denotes an archive of file system of an author, which

contains 1067 files and 67 directories. Here, files are

converted into leaf-nodes, and directories are converted

into non-leaf-nodes, to form the hierarchical data.

Computation time was about 0.1 second by IBM

ThinkPad A31p (Intel Pentium III, 1.7GHz) with

Windows 2000 and Java Development Kit (JDK) 1.3.1.

6. Conclusion

This paper presented a new hierarchical data

visualization technique HeiankyoView, which

represents the data as nested rectangles, using an

orthogonal display layout algorithm.

The study presented in this paper is in a very

beginning stage and we just developed a prototype and

tried to represent some data. The following issues are

therefore our next works on this study:

 Comparison with existing techniques, especially

Data Jewelry Box [Ito03] and Quantum Treemap

[Bed02], by using some numerical metrics

including aspect ratios of rectangles, total display

areas, and computation times.

 Extension for stable representation of

time-varying data, like as Data Jewelry Box

extended for time-varying data [Yam03]. It will

be one of the main advantages of HeiankyoView

against existing hierarchical data visualization

techniques.

Figure 6. Example.
ix 1+ix 1+jx jx

ky
1+ky

ly
1+ly

),(ca yx),(db yx

Figure 5. (left) Subspaces that HeiankyoView
determines the overlap between rectangles. (right)
Subdivision of subspaces.

 Experiments with applications, like as Data

Jewelry Box has been applied to Web sites, Web

query results, data mining results, network

intrusion detection, and distributed process

monitoring.

 Speed up of the algorithm. The number of

subspaces of display area is)(2nO in the worst

case, where n is the number of rectangles. The

computation time of HeiankyoView is therefore

)(2nO in the worst case.

References
[Bed02] Bederson B., Schneiderman B., Ordered and

Quantum Treemaps: Making Effective Use of 2D Space

to Display Hierarchies, ACM Transactions on Graphics,

Vol. 21, No. 4, pp. 833-854, 2002.

[Car95] Carriere J., et al., Research Report: Interacting

with Huge Hierarchies Beyond Cone Trees, IEEE

Information Visualization ’95, pp. 74-81, 1995.

[Ito03] Itoh T., Yamaguchi Y., Ikehata Y., and Kajinaga

Y., Hierarchical Data Visualization Using a Fast

Rectangle-Packing Algorithm, IEEE Transactions on

Visualization and Computer Graphics, in process.

[Joh91] Johnson B., et al., Tree-Maps: A Space Filling

Approach to the Visualization of Hierarchical

Information Space, IEEE Visualization ’91, pp.

275-282, 1991.

[Koi95] Koike H., Fractal Views: A Fractal-Based

Method for Controlling Information Display, ACM

Trans. on Information Systems, 13, 3, pp. 305-323,

1995.

[Lam96] Lamping J., Rao R., The Hyperbolic Browser:

A Focus+context Technique for Visualizing Large

Hierarchies, J. Visual Languages and Computing, 7, 1,

33-55, 1996.

[Rek93] Rekimoto J., The Information Cube: Using

Transparency in 3D Information Visualization, Third

Annual Workshop on Information Technologies &

Systems, pp. 125-132, 1993.

[Spr00] Sprenger T. C., et al, H-BLOB: A Hierarchical

Visual Clustering Method Using Implicit Surfaces,

IEEE Visualization 2000, pp. 61-68, 2000.
[Yam03] Yamaguchi Y., Itoh T., Visualization of

Distributed Processes Using "Data Jewelry Box"
Algorithm, CG International 2003, pp.

0) Select rectangles one-by-one.

1) Select subspaces of the display space in the spiral
order.

2) Calculate four candidate positions for each
subspace, and repeat (2-1) to (2-4) for each candidate.
After processing all four candidates, return to 1) and
process other subspaces.

(2-1) Try to place the rectangle at the candidate, and
determine the overlap with previously placed
rectangles.

(2-2) If the current rectangle overlaps with at least
one of other rectangles, return to 2) and process other
candidates.
(2-3) If the current rectangle does not overlap with
any of other rectangles, and the placement does not
extend the display area, decide to place the rectangle
there, and go to 3).
(2-4) If the current rectangle does not overlap with
any of other rectangles, and the extension of display
area is the smallest, register the candidate as temporal
position.

3) Place the rectangle, and subdivide the subspaces
by extension lines of the edges of the rectangle.
Return to 0).

Figure 7. Pseudo-code of HeiankyoView.

