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Abstract—In this paper, we propose a parameter 

optimization technique using  the Response Surface 
Methodology (RSM) for the accurate biological cell simulation 
which calculates cell behavior by numerically integrating the 
differential equation and generates action potentials, 
intracellular Ca transient, contraction, and intracellular ATP 
consumption by using  parameter values of major ion 
permeability and amplitude of Ko dependency. Since most of 
these parameters cannot be directly measured by experiment, 
these are searched for by applying an optimization technique, 
that is, by minimizing an objective function defined as a 
difference between a measured and a calculated waveform of 
action potentials in a cardiac myocyte. We employ the RSM as 
the optimization technique. In the RSM, a quadratic 
polynomial is used in general, and a mathematical technique is 
used to calculate the extreme points. Because our parameter 
space cannot be approximated by a single quadratic 
polynomial surface, we adopt a recursive subdivision technique 
and use the coefficient of multiple determination to 
representing a response surface in each subspace for a criteria 
of the subdivision. We confirmed the effectiveness of the 
proposed technique by searching for parameters which are 
determined in advance. 
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I.  INTRODUCTION 
 

 Recently, there was development in biological fields, 
such as biochemistry and molecular biology. So it became 
possible to analyze life activity functionally from 
microscopic viewpoints, such as in a gene or a cell, which 
means that the approach of biology changed fundamentally. 
With this, a new scientific discipline called Bioinformatics 
was born. This means analyzing DNA or protein sequences 
using the methodology of information science. Now, the 
genetic code of various living things is analyzed using this 
technique, and the function is becoming clear. 

All living bodies are composed of a set of cells. That is, it 
can be said that a life phenomenon is a collection of 
reactions occurring in a cell. Development in Bioinformatics 
field enabled it to analyze the mechanism in a cell in detail. 
Thereby, research results on life information are 
accumulated. However, even if each gene and the function 
of each gene and each substance are known, we cannot 
necessarily understand behavior of the whole cell. It is 
because the structure of a cell is formed as the network in 
which the actions of a gene or a metabolism substance 
become entangled intricately. In order to understand the 

structure of the network, a model is assembled based on the 
data of the collected life information, and it reappears using 
a computer, that is, reconstruction of life information is 
needed. This is a cell simulation. 
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The Heart Simulation Project at Kyoto University aims at 
unifying the analytic research on a genome, proteome, etc., 
and searching for a new principle, making full use of the 
calculation power of a computer system. The project 
develops a cardiac myocyte model (KYOTO Model [8]), 
which is composed of the majority of known sarcolemmal 
ion channels and transporters, sarcoplasmic reticulum, and 
contractile elements. This model is based on the Hodgkin-
Huxley model, and simulates cell behavior by numerically 
integrating the differential equation and generates action 
potentials, intracellular Ca transient, contraction, and 
intracellular ATP consumption by using  parameter values 
of major ion permeability and amplitude of Ko dependency. 
Since most of these parameters cannot be directly measured 
by experiment, these are identified by experimental results. 
Parameter identifications of the cardiac myocyte model were 
regarded as an optimization problem that minimizes an 
objective function defined as a difference between a 
measured and a calculated waveform of action potentials in 
a cardiac myocyte.   

AR Willms and et. al. estimated parameters of the 
Hodgkin-Huxley model by fitting each conductance trace 
from a voltage-clamp experiment[3]. They employed a 
standard nonlinear least-squares optimization algorithm to 
minimize the objective function. Saitoh and et. al. utilized 
the E-Cell simulation environment as a framework of  
estimating parameters for the accurate cell simulation by 
employing the Genetic Algorithm(GA) in addition to 
standard optimization algorithms, such as the Rosenbrock 
method and the Modified Powell method[4]. In the standard 
optimization algorithm, the quality of the solution is deeply 
dependent on the selection of the initial values  of the 
parameters to be estimated. Although the GA might solve 
the problem caused by the initial values, it might take a lot 
of computational time and could not consider the local 
distribution of the objective function. To cope with these 
problems, we employ the Response Surface Methodology 
(RSM) [1] as the optimization technique. In general, the 
RSM is used for optimization of the process of a product 
design etc, and thermal simulation[5,6,7].  

In the RSM, a quadratic polynomial is used in general, 
and a mathematical technique is used to calculate the 
extreme points. After we evaluate our parameter space, 
which is composed of three parameters, we understand that 
no quadratic polynomial surface can approximate our 
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where k denotes the number of parameters at each design 
point and y, xi(i=1,..,k) and iβ (i=1,..,k) represent the known 
response value, the known parameters and the unknown 
coefficients, respectively.  

parameter space. To solve this problem caused by many 
local minima, we adopt a recursive subdivision technique 
and use the coefficient of multiple determination to 
representing a response surface in each subspace for a 
criteria of the subdivision. In this paper, first, we describe 
our parameter optimization technique, and then verify the 
effectiveness of the proposed technique by searching for 
parameters which are determined in advance. 

In the RSM-based technique, we define a response as an 
association measure  calculated by using a difference 
between the target waveform and a waveform simulated 
using a set of parameters. These parameters are determined 
using the Design of Experiments (DOE)[2]. In this paper, 
we define an association measure ( χ ) as  

 
II.  METHODOLOGY 

 
 The Kyoto Model is implemented as a computer program, 

which carries out the simulation of the electric action 
potential of a cardiac myocyte by using parameter values of 
major ion permeability and amplitude of Ko dependency. 
The waveform of the action potential, which we take into 
consideration during the parameter optimization in this 
research, is shown in Fig.1. In this research, we optimize 
three parameters: “Na permeability”, “Ca permeability”, and 
“amplitude of Ko dependency.” 
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where V0(t) and V(t) represent the target potential at t (msec), 
and the calculated potential at t (msec), respectively. In short, 
when the value of χ equals to zero, the calculated 
waveform agrees with the target waveform completely. Note 
that “ χ ” is identical to the dependent variable “y” in Eq.(3). 

 Fig. 1.  The waveform of action potential in a cardiac myocyte 
  
We identify these parameters of the Kyoto Model as an 

optimization problem, which minimizes the difference 
between a measured and a calculated waveform of action 
potentials in a cardiac myocyte. In order to check the 
validity of the proposed technique, we, in advance, 
determine parameters which generates a waveform used as a 
target waveform in the Kyoto Model. To search for these 
parameters (target parameters), we employ the RSM, which 
is a technique to approximate the unknown response 
function by using some design points. Here, a design point 
is a set of parameters. Generally, in the RSM, a second-
order model is used, since it is flexible, and it is easy to 
estimate the parameters. In general the second-order model 
is as follows: 

 

χ
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Fig. 2.  Identification process using the RSM-based technique 
  

In general, the process of the RSM-based optimization 
technique is shown in Fig.2. We first specify parameters and 
the range of their values, and determine some sets of 
parameters by using the DOE. Secondly, we carry out the 
cell simulation using sets of parameters determined by DOE, 
and calculate the value of χ  by using the calculated and 
target waveforms. Note that the number of times that the cell 
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where k and p denotes the number of parameters and 
responses, and SSR and SYY  represent regression sum of 
squares, and total sum of squares, respectively. If each 
parameter is normalized, this value will be between 0 and 
1.The high or low value means that the response surface 
created by RSM is well adapted or not, respectively. 

simulation are carried out is the same as that of design 
points. Finally, we construct the response surface  and 
search for an extreme point. 

By evaluating our parameter space in the full 
combinatorial design of three parameters, we understand 
that a single response surface cannot approximate our 
parameter space. It means that a simple polynomial is not 
recommended with respect to the accuracy of parameter 
optimization results. It must be noted that there may be 
multiple parameter sets that generate a waveform equally 
well fitted to the target waveform. 

With the physiological viewpoint of the, the range of each 
parameter was determined as follows. 
! “Na permeability”            2000 ~ 3000       
! “Ca permeability”            7000 ~ 9000 
! “Amplitude of Ko dependency”      100 ~ 200 

The process of the proposed optimization technique is 
shown in Fig.3. In our proposed optimization technique, we 
first construct a response surface in the whole parameter 
space, and calculate the R2 of the response surface. If the 
calculated coefficient is under the user-specified criteria, we 
subdivided the space by splitting each parameter range into 
two at equal intervals. For example, in the case of three 
parameters like our experimental case, the parameter space 
will be subdivided into 23 = 8 subspaces. Each subspace is 
recursively subdivided until the calculated coefficient of the 
subspace is beyond the criteria. We call a subspace with the 
satisfied coefficient as a leaf-subspace, that is a leaf-node of 
the parameter tree. In the leaf-subspace, the response surface 
is well adopted, and we search for the local optimum 
solution, that is a set of parameters which minimize the 
value of χ . When the R2 of the response surface exceeds 
the criteria in each of  the leaf-subspaces, we search for a 
global solution among all the local solutions in the leaf-
subspaces. 
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III.  RESULTS AND DISCUSSION 

Two metrics may be considered to verify the accuracy of 
a set of parameters which are searched for by our 
optimization technique. The first is the distance between the 
calculated and exact solution, and the second is the value of 
χ  evaluated by using the calculated solution. Since in 
general, the exact solution may not be known in advance, 
the second metric is adopted in this research. 
 Table.1 shows the R2 and the optimal solution in each 
subspace after the first subdivision. Here, we specify the 
user-specified criteria for the further subdivision as 0.9.In 
Table.1, the combination of the number of the leftmost 
column means the location of the relevant subspace. The 
first, second, or third number represents “Na permeability”, 
“Ca permeability”, or “Amplitude of Ko dependency”, 
respectively. For example, "1-2-1" means the following 
subspace. 

Fig. 3.  Optimization process by recursive subdivision technique 
 
In general, the distribution of χ  is too complex to be 

presented by a single response surface in the parameter 
space. To solve this problem, we propose an RSM-based 
optimization technique using a recursive subdivision 
strategy. To determine whether further subdivision should 
be made, we employ an coefficient of multiple 
determination (R2) which shows the degree of adaptation of 
a response surface. The R2 is defined as,  

! “Na permeability”   2000 ~ 2500       
! “Ca permeability”   8000 ~ 9000 
! “Amplitude of Ko dependency” 100 ~ 150 
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Since the R2 are beyond the user-specified criteria, 0.9, in 

the subspaces “1-1-2”, “1-2-1”, “2-1-2”, and “2-2-1”, 
optimal solutions are calculated. On the other hand, since 
they are below the criteria in the subspaces, “1-1-1”, “1-2-2”, 
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“2-1-1”, and “2-2-2”, the further subdivisions are made. So 
in Table.1, the R2 are shown only in those subspaces. 

As shown in Fig.3, the recursive subdivision is made until 
the R2 are beyond the user-specified criteria in all the leaf-
subspace. Table.2 shows the optimization result. In this 
experiment, the recursive subdivision was performed at four 
stages. This corresponds to the case in which each parameter 
range is equally split into sixteen. 

 
TABLE I 

Result of first recursive subdivision 
subdivision

pattern Na Ca IK1 association
measure

coefficient of
multiple

determinations
1-1-1 0.725354
1-1-2 2000 7800.939 150 36.06178 0.9<
1-2-1 2244.676 9000 150 58.21841 0.9<
1-2-2 0.728439
2-1-1 0.8004
2-1-2 2500 7809.199 150 24.35524 0.9<
2-2-1 2744.897 9000 150 69.61225 0.9<
2-2-2 0.6745  

 
 

 

TABLE II 
Comparison of optimization results 

Na Ca IK1 association
measure

All range(quadratic) 2000 8869.301 149.8869 44.71859
All range(quartic) 2000 7902.233 149.0073 24.87055

Recursive subdivision 2312.5 7625 140.494 0.488175
Exact solution 2300 7600 140 0  

 
 For comparison, we optimize parameters without the 

recursive subdivision, that is using a single response surface. 
In Table 2, the first and the second rows show the optimized 
parameters and the relevant values of χ  using the quadratic 
and quartic polynomial-based response surfaces, 
respectively. The proposed technique, listed in the third row, 
is quadratic polynomial-based, and superior to these results 
with respect to the value of χ .  

In general, if we assume that  
1. k parameters are optimized 
2. M stages are required to obtain optimized parameters 

by using our technique, and  
3. In each stage, the R2 become beyond the user-specified 

criteria (0.9 in this experiment) in the half of the whole 
subspaces at the stage,  

the improvement ratio will be  
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V.  CONCLUSION 

In this paper, we propose an RSM-based optimization 
technique using a recursive subdivision. The point is to use 
an R2 which shows the degree of adaptation of a response 

surface in order to determine whether to proceed further 
subdivision or not. We apply this technique for optimizing 
three parameters for improving the accuracy of biological 
cell simulation and confirm its effectiveness. In addition, we 
show a theoretical equation for evaluating the performance 
improvement of our technique. 
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