
A Visualization Technique for Hierarchical Time Series Task Data

Yumiko Uchida Takayuki Itoh
Graduate School of Humanitics and Sciences, Ochanomizu University

E-mail {yumi-ko,itot}@itolab.is.ac.jp

Abstract

This paper presents an information visualization
technique that represents both time series information
and hierarchical structure onto a two-dimensional
display space. It represents time series data as bar
charts along the horizontal axis of a screen, and
hierarchical structure as nested rectangular borders
enclosing the bar charts. It packs the nested
rectangular borders representing hierarchical
structure so that it can represent a lot of information in
a limited display space. We suppose there are various
applications of the technique since we can obtain much
information from large-scale data in one display.
This paper shows the visualization result of a task

table used for business progress management and
loads of a parallel computing environment as examples
of results of the proposal technique.

1. Introduction

Information visualization is an active research area
which helps understanding of abstract information
applying computer graphics. An advantage of
information visualization is that users can intuitively
understand data than reading them expressed only by
characters or numerical values.

Shneiderman has advocated seven types of data
structure: one dimension, two-dimension, three-
dimension, n dimension (n>3), time series, hierarchical
structure, and graph, as a classification of data used in
information visualization [1]. There have been many
techniques for visualizing each of above data structure.
While on the other hand, many techniques for
visualizing data compounded above seven types of
data structures is actively proposed.

This paper focuses on hierarchical and time series
data from the above seven data structure. Here, we
define hierarchical structure data as the data forming a
tree structure, while those each data element is
hierarchically grouped. We also define time series data
as the data representing the time-varying change of a
certain phenomenon. Visualization of time series data
is very valuable, because it is generally difficult to
discover the temporal response of a certain
phenomenon from character-based description of time
series data.

This paper presents a technique for visualizing
hierarchical time series task data. We define a task as
the operating unit which has start time and end time.
Here we treat each task as leaf node, and group of tasks
as non-leaf nodes, so that we can form collection of
tasks as hierarchical data.

This technique represents a time series along the
horizontal axis on a screen, and represents each task
using bar charts - horizontally stretched thin rectangles.
Moreover, the technique represents the hierarchical
structure of task groups as nested rectangular borders.
This representation follows our hierarchical data
visualization technique "HeiankyoView" [2]. The
technique proposed in this paper can represent the
whole large-scale data containing a lot of tasks in one
display space, by packing the rectangle areas so that
the amount of blanks are minimized in the display.

As an example of application of this technique, we
consider the visualization of a task table used for
business progress management of companies. Typical
task tables record assignments, schedule, degree of
progress, and so on. Although commercial production
of the task management tool is progressing in recent
years, most of them display a schedule and a degree of
progress divided into two or more windows. Therefore,

it is controversial to develop visualization technique
which enables us to simultaneously get a lot of
information such as task progress and schedule.

We also visualize the load of parallel computing
environment as task data, as another example of
application of the technique. We assume that each
thread of parallel computing as a task, and the threads
record start time, end time, load to a computer, and so
on. We can form hierarchical time series task data by
classifying these task groups according to their various
attributes, such as types of threads or assigned
computers. We expect visualizing these data will
support to determine suitability of scheduling of
hierarchical parallel computing environment. This
paper tests an availability of proposal technique, as we
visualize the processing time monitored in actual
parallel computing environment and discussing its
scheduling results.

2. Related Work

The technique proposed in this paper visualizes
hierarchical data structure in one display space, by
packing data items onto a display space while it
attempts to minimize the display space usage. This
approach is often called “space-filling approach”,
where HeiankyoView [2] is a typical space-filling
hierarchical data visualization technique. The most
famous space-filling hierarchical data visualization
technique is TreeMaps [3] proposed by Johnson et al.,
which recursively divides a display space to form a
nested band chart. There have been several variations
of TreeMaps that improve its appearance and
capability [4] [5]. The technique proposed in this paper
is a kind of the combination of space-filling
hierarchical data visualization technique with time-
varying data visualization technique.
There have been several works which represent task

data. Some of works extend Gantt Chart, a typical
representation of task data. Some other works extend
bar charts to represent hierarchical or network time
series data [6]. There has been also a technique which
represent time series and hierarchical structure by
combining a bar graph, a line graph, and figures
representing network on a display [7] [8]. Against

these work, the proposed technique attempts to
minimize the display space usage while it
simultaneously represents both hierarchical and time-
varying information.

3. HeiankyoView

HeiankyoView [2] is one of the techniques for
visualizing hierarchical data, which represent leaf
nodes as square icons, and non-leaf node as rectangular
frames. Fig. 1 shows an example of visualization result
of hierarchical data by using HeiankyoView. A feature
of HeiankyoView is placing all leaf nodes over the
whole hierarchical data in one display space. It
efficiently uses display area by packing rectangles so
that the blank spaces are minimized. HeiankyoView is
appropriate for visualizing large-scale hierarchical data,
since it can display many nodes in one display space,
representing a hierarchical structure.

Our technique proposed in this paper represents time

series information using bar charts like typical existing
techniques, and hierarchical structure as rectangular
borders like HeiankyoView.

4. Proposal Technique

4.1 Data Structure

Table 1 shows an example of data for our technique,
which forms hierarchy as

STask Task Function Project ⊃⊃⊃ .

Fig.1 ： An example of visualization result of
hierarchical data by HeiankyoView

Fig. 2 represents the data of Table 1 as hierarchical
data. We treat lowest data elements (STask in the case
of Table 1) of each task as leaf nodes, and the higher
level unit (Project, Function, Task in the case of Table
1) of each task as non-leaf nodes. We assume that each
leaf node contains start and end time, respectively, and
treat them as time series information.

The technique proposed in this paper represents leaf

nodes as bar charts, where those lengths are
proportional to their duration (between start day and

end day in the case of Table 1), and non-leaf nodes as
nested rectangular borders which enclose bar charts.

4.2 Overview of this technique
Fig. 3 shows the overview of the rectangle packing
algorithm used in this technique. The technique
assumes the time-axis as a horizontal axis of a display,
and set up a horizontal base point line. The technique
places bar charts on a base point line so that they may
not overlap with each other, and then encloses them by
a rectangular border. It places these rectangles so that
they may not overlap each other, and blank spaces are
minimized. Repeating this process recursively from
lowest to highest levels of hierarchy, it represents the
whole data.

4.3 Algorithm for Packing Rectangles

Let positions of the vertices of an already placed
rectangle jR as shown in Fig. 4. The technique
calculates the x-coordinate value of the vertices of the
rectangle iR according to the start time and the end
time (start day and end day in the case of Table 1). If
the calculated x-coordinate value of iR is set to

)(, biaibiai xxxx < and satisfies equation (1), it
may overlap with iR (See Fig. 5).

bjaibiaj xxxx <∩< …(1)
Referring to positions of jR satisfying equation (1),
the technique determines the position of iR
Supposing there are k rectangles which satisfy

equation (1). For these rectangles, the technique varies
cjy in ascending order, as ,',' 21 cc yy … cky' , and djy

in ascending order, as ,',' 21 dd yy … dky' .
From 1=s to order

Project

Function1 Funciton2

Task1.1 Task1.2

 Stask1.1.1 STask1.2.1

Task2.1

･････

･･･non-leaf node
･･･leaf node

Fig.2：Representation of the data
in Table 1 as hierarchical data.

Fig.3：The overview of the packing
algorithm applied in this technique.

Table1: An example of task table.

Start Day End Day
Project

Function1
Task1.1

STask1.1.1 2006/04/01 2006/04/30
STask1.1.2 2006/04/01 2006/04/30

Task1.2
STask1.2.1 2006/05/01 2006/05/31
STask1.2.2 2006/05/01 2006/05/31
STask1.2.3 2006/05/01 2006/05/31
STask1.2.4 2006/05/01 2006/05/31

Function2
Task2.1
: : : :
: : : :

Task
Schedule

1) Place iR temporarily where the y-coordinate of
the lower edge of iR as dsdi yy '= .
2) Find jR which satisfies djcidicj yyyy '' <∩< .
・If there is at least one rectangle which satisfies the
above condition, iR overlaps to the already placed
rectangle. Then let s increase by one and return to
1).
・If there are no rectangles which satisfy the above
equation, we arrange iR as dsdi yy '= (See Fig. 6).

Applying this process for all iR , we determine
positions of all bars and rectangles.

5. Results

We implemented the proposed technique on Java 1.5,
and executed on HP dc5700 Small Form (CPU 2.8GHz,
RAM 0.99GB) with Windows XP. The following
results will be also published as color document files at
http://itolab.is.ocha.ac.jp/ .

 Fig. 7 shows a task table visualized by our technique.
Here, colors of bar charts denote degree of progress of
task, where a redness bar chart represents a task with
low degree of progress, and a blueness bar chart
represents a task with high degree of progress. This
technique helps us to understand the distribution of the
section behind schedule.

This section also introduces another example of
visualization of task data, constructed from load data
of parallel computing environment, as shown in Fig. 8.
Here, bars denote threads of parallel computing
processes, and rectangular borders denote hierarchy of
the threads. Color of bars denotes degree of their scales
(such as CPU time or memory usage) so that redness

),(cjaj yx

),(djaj yx

),(cjbj yx

)(djbj yx

Fig.4：Positions of vertices of a rectangle.

Rectangles
which do not
satisfy equation
(1) do not
overlap with Ri.

aix bix

iR

Fig. 5: Condition whether rectangles
overlap to currently placing rectangle.

Fig.6: Searching for the position in which the
currently placing rectangle does not overlap to

other rectangles.

aix bix

Ri

Second candidate position.
In this case, rectangle is
placed here.

First candidate.

Fig. 7： A visualization result of a task table

bars represent large threads, and blueness bars
represent small threads.
This experiment classifies threads and constructs

hierarchy according to the following rules:
• There are same numbers of firstly executed

threads and secondly executed threads. This
section calls former threads "thread A", and latter
threads "thread B".

• This experiment forms low-level groups gathering
several thread A, and then forms a high-level
group consists of all thread A, by collecting all
the low-level groups. The experiment similarly
forms two-levels of groups of thread B.

• Thread A relates to thread B one for one. A thread
B can not start until the related thread A is
completed.

One of the typical examples of processes forming such
hierarchy is parallel processing of graphics hardware,
where coordinate conversion process corresponds to
thread A, and pixel process corresponds to thread B.
In Fig. 8, this technique displays whole thread A on

the upper half of the visualization result, and whole
thread B is displayed on the lower half.

Fig. 8 (upper) shows an example of visualizing
parallel computing environment, where processing
time of thread A is shorter than that of thread B. Here,
parallel computing starts all threads of a group of
thread B after all threads of the related group of thread
A are completed. However, if threads of another group
of thread B still run at this time, parallel computing
must wait to complete all of them, and after that it can
start the threads of another group of thread B. Fig. 8
(upper) shows a situation that two or more groups of
thread B continue even if all thread of thread A is
completed. Fig. 9 (left) is a zoom-up of the right end of
Fig 8. (upper), which represents several threads of
thread B still run after all threads of thread A is
completed.

Fig. 8 (middle) also shows an example of
visualization result of parallel computing environment,
where processing time of thread A is shorter than that
of thread B. Unlike the previous example shown in Fig.
8 (upper), parallel computing starts the threads of a
group of thread B unconditionally, when threads of the
related group of thread A is completed. This

visualization result shows that parallel computing
completes whole thread A and B almost simultaneous.
Fig. 9 (middle) is a zoom-up of the right end of Fig. 8
(middle), which represents thread A and B are
completed almost simultaneous. Moreover, this result
also shows that a load of CPU becomes larger since
processing of two or more group of thread B runs at
certain time.

Fig. 8 (lower) shows an example of visualization
result of parallel computing environment, where
processing time of thread A is longer than that of
thread B. Here, similar as Fig. 8 (upper), parallel
computing starts threads of a group of thread B after
threads of the related group of thread A and other
groups of thread B are completed. This visualization
result shows that a group of thread B has finished
processing while a group of thread A is running.
Moreover, this result also shows that idle time is
arising in a part of processing of thread B. Fig. 9
(right) is a zoom-up of Fig. 8 (lower), which represents
that thread B is often idle.

We expect that such visualization shown in Figures
8 and 9 can contribute to configure parallel computing
environment.

6. Conclusion and Future Work

This paper proposed a technique for visualizing
hierarchical time series task data, and showed
visualization result of a task table and parallel
computing environment.

As a future work, we would like to develop a
technique to place rectangles as seamless as possible
when the period of a task is changed. Furthermore, we
would like to consider of dependency among tasks for
their placement. We are also planning to conduct a user
test using task data containing certain problems, to
proof the availability of this technique. Ultimate targets
of this study include simulations of scheduling of tasks
which assume various situations.

Acknowledgment

We appreciate Masato Oguchi, Professor of
Graduate School of Humanitics and Sciences,
Ochanomizu University, for his advices about

visualization of parallel computing environment.

References
[1] Shneiderman B., The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualization, IEEE Symposium
on Visual Languages '96, pp. 336-343, 1996.
[2] Itoh T., Takakura H., Sawada A., Koyamada K.,
Hierarchical Visualization of Network Intrusion Detection
Data in the IP Address Space, IEEE Computer Graphics and
Applications, Vol. 26, No. 2, pp. 40-47, 2006.
[3] Johonson B., Scheneiderman B., Tree-Maps: A Space
Filling Approach to the Visualization of Hierarchical

Information Space, IEEE Visualization ’91, pp. 275-282,
1991.
[4] Bederson B., Scheneiderman B., Ordered and Quantum
Treemaps: Making Effective Use of 2D Space to Display
Hierarchies, ACM Transaction on Graphics, Vol. 21 No. 4,
pp. 833-854, 2002.
[5] Bruls D. M., Huizing K., Wijk J. J., Squarified Treemaps,
Proceedings of Data Visualization 2002, pp. 33-42, 2000.
[6] Herrmann J. W., A History of Decision-Making Tools for
Production Scheduling, Multidisciplinary Conference on
Scheduling: Theory and Applications, 2005.
[7] Russell, A. D., Udaipurwala, A., Construction Schedule
Visualization, Proceedings of the International Workshop on
Information Technology in Civil Engineering, 2-3 November
2002, pp. 167-178, 2002.
[8] Russell, A. D., Udaipurwala, A., Integrated Project
Planning through Hierarchical Scheduling, Proceedings of
Specialty Conference on Fully Integrated and Automated
Project Processes, pp. 311-321, 2002.

Fig. 9： Extended figure of distinct part of Fig. 8

Fig. 8 ： Examples of visualization of tasks
obtained from a parallel computing

