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ABSTRACT 
 
This paper proposes a technique for visualizing the 
progression of evolutionary algorithms such as genetic 
algorithms (GAs). Our technique supposes that a GA solves 
optimization problems that maximize target functions with 
multiple parameters. Then, our technique presents the time-
varying parameters during the progression of the GA. The 
technique applies two-tone pseudo-coloring for the precise 
representation of changes in parameter values, so that users 
can understand the behavior of the GA. We also provide a 
user interface to control the configuration of the GA so that 
users can obtain the optimal solution earlier. The paper shows 
experimental results to demonstrate the efficacy of the 
technique. 
 

1. INTRODUCTION 
 
An Evolutionary Algorithm (EA) is a very powerful 
optimization scheme that has been applied to various technical 
fields. A Genetic Algorithm (GA), one of the most famous EA 
schemes, is especially useful for problems that lack clear 
solutions and that cannot be solved using full search schemes 
because the GA’s parameter space is huge and unstructured. A 
GA evaluates the fitness of an organism to an environment [1], 
based on principles of Darwin’s evolutionary theory. Suppose 
that the genes of animals correspond to the input parameters 
of certain functions, and the fitness values correspond to the 
functions’ return values. Here, the GA gradually discovers the 
optimal solution of the problem according to the evolution of 
the input parameters. 

The following points are important to quickly discover 
optimal solutions using a GA: 
• Coding input parameters as genes, and 
• Controlling configurations for evolution of genes. 
We especially need to effectively and carefully configure GAs 
while observing the exploration of parameter spaces according 
to the evolution of genes. However, it is generally difficult to 
fully automate controling the configuration of GAs. Therefore, 
several studies focus on interactive implementations of GAs to 
effectively control the exploration of parameter spaces. 

This paper proposes EMACI (Evolutional Multi-parameter 
Analysis and Control Interface), a visual interface of the 
process of GAs. Regarding the parameters and target function 
as a multi-dimensional data, EMACI represents the repetitive 
process of a GA as time-sequence multi-dimensional data. 
EMACI also provides a user interface to effectively control 
the configuration while users observe the visualization results. 
This user interface helps users to control the configuration 
intuitively, and consequently to discover optimal solutions in 
shorter times. 

The naming of EMACI comes from “Emakimono”, hand-
scrolled, horizontally illustrated narratives created during 
Heian, Kamakura, and Muromachi periods in Japan; we feel 
the technique looks like Emakimono since it displays the time 
sequence of multi-parameters as a horizontal spread. 

This paper also introduces an application of the EMACI to 
the parameter optimization of heart cell simulations. This 
optimization problem defines the target function as the error 
of simulation result of time-varying electric potential against 
the real measurement, with parameters as density or other 
measurements of ions such as K+ and Na+.  We need to repeat 
the simulation inputting a variety of parameters, in order to 
discover the optimal solution [2]. We are applying EMACI to 
this optimization problem, by coding the measurements of 
ions as genes, and by repeating the simulation with the 
evolution of the parameters by the GA. 
 

2. RELATED WORK 
 
2.1 Genetic Algorithm 

A Generic Algorithm (GA) is an optimization scheme 
inspired by Darwin’s evolutionary theory, which consists of 
several processes mimicking evolutionary processes of 
animals, including selection, crossover, and mutation [1]．  

 

 
Figure 1: Processing flow of a GA. 

 
Figure 1 shows a typical processing flow of a GA. It consists 

of the following key processes: 
Initialization: randomly generates initial genes. 
Evaluation: calculates the fitness values for each gene, and 
sorts the genes according to the evaluation result. 
Selection: extracts two parents, where their probabilities are 
weighted according to the evaluation results. 
Crossover: generates children genes from the selected two 
genes after the Selection process. The GA repeats the 
Selection and Crossover processes until it generates the 
specified number of children. Here we may apply “elite” 



reproduction, which just copies the genes of highly fit parents 
to their children as clones. 
Mutation: randomly modifies the genes on a given 
probability. This operation corresponds to a failure to 
expresscertain DNA. Mutation is a useful technique to break 
out local optimal solutions and to get closer to the global 
optimal solution. 
Terminate Check: stops the repetition of the GA according to 
predefined conditions. 

This implementation mimics the gametogony of animals, 
during which the exchange of genes of selected individuals 
results in more conformable children. The repetition of GA 
processes leads to the optimal solution of target functions. 
 
2.2. Visualization for Genetic Algorithm 
Many studies involving GAs have attempted to analyze the 
trajectory of parameter spaces and the evolution of target 
functions, to understand the effort of methodology and 
parameters for the quick and certain exploration. It is effective 
to display the evolution of target functions as time-sequence 
data. However, many GA-applied optimization problems have 
multiple parameters. Therefore, it is generally difficult to 
understand the relations between the parameters and the target 
function, if one simply draws them as polygonal charts. 
Visualization techniques are desirable so that we can visually 
understand the exploration of parameter spaces and the 
evolution of GA processes. 

Moreover, it often happens that the GA falls into local 
optimal solutions from which breaking out is difficult. 
Visualization of parameter space exploration is useful to 
understand the causes of the falls and to discuss the strategy to 
break out of the local optimal solutions. 

Interactive, visual implementations of GAs are useful since 
users can control the exploration of parameter spaces while 
they observe the repetition of the GAs. 

The performance of the parameter space exploration of a 
GA depends on not only on methodology but also on many 
configurations, such as the number of individuals, the 
probability of mutation, and the probability of crossover. It is 
generally difficult to develop conclusive techniques to 
completely, automatically control the configuration. The 
interactive implementation of a GA is useful because one can 
control the configuration via a user interface, so that one can 
thereby improve the parameter space exploration. 
Visualization of GA processes helps to support configuration 
control. 

There are several recent works on the visualization of GA 
processes from the above viewpoint. The following are 
examples of related works on the visualization of GA 
processes: 
• Visualization of multi-parameter spaces using Self 

Organizing Map (SOM) [3]．The technique represents 
clusters of solutions to easily understand the exploration 
of the space. The technique has been applied to some 
multi-criterion optimization problems. 

• Visualization of solutions led by Interactive Evolutionary 
Algorithm (IEA) and Interactive Genetic Algorithm 
(IGA) [4]. The technique enables subjective control of 
GAs, since users interactively evaluate the solutions. 

• Visualization of the landscape of target function values 
[5]. The technique codes multi-dimensional parameters 
as input vectors, and summarizes them into a 2-
dimensional display space. It can represent the 
distribution of parameters during the repetition of a GA 

process. 
Against the above existing work, our technique focuses on the 
representation of time sequence changes in parameter values 
for real-time adjustment of configurations of GA. 
 
2.3. Multi-Dimensional Data Visualization 
As mentioned above, many GA-applied problems optimize 
target functions of multi-dimensional parameters. Therefore, 
the visualization of parameter spaces corresponds to the 
visualization of multi-dimensional time-sequence data. 
The following are typical multi-dimensional data 

visualization techniques. Many of such famous multi-
dimensional data visualization techniques originally deal with 
static data, and visualization of time-varying multi-
dimensional data is still a hot and changing topic. 
• Parallel Coordinates [6]. The technique draws vertical 

lines in a 2-dimensional orthogonal coordinate system, 
where each line corresponds to each dimension, and 
generates polygonal charts by plotting values of the 
input information onto the vertical lines. 

• Worlds within Worlds [7]. The technique assigns 3 
variables of the input data as each axis of 3-dimensional 
orthogonal coordinate system, and plots each data item. 
It then assigns other 3 variables as each axis of a 3-
dimensional orthogonal coordinate system located inside 
a part of the first world. 

• Several well-known techniques project the input multi-
dimensional data onto 2- or 3-dimensional spaces using 
dimension reduction techniques. Design Galleries [8] is 
a well-known technique applying such dimension 
reduction technique. 

• Several techniques apply “Glyphs” to represent multi-
dimensional values by varying their shapes, sizes, and 
colors.  Ebert’s technique [9] is an example of multi-
dimensional data visualization using Glyphs. 

 
2.4. Two-Tone Pseudo Coloring 
The technique proposed in this paper applies two-tone pseudo 
coloring [10]. It assigns two colors to a one-dimensional range, 
and represents the value by controlling the widths of the two 
colors. It is very suitable to precisely represent long-scale 
time-sequence data in a small display space. Also, it 
represents both the overview and details of the dataset in one 
image. 
Figure 2 illustrates the visualization of time-sequence data by 

two-tone pseudo coloring and traditional polygonal charts. In 
the final phase when the data slightly changes, two-tone 
pseudo coloring captures the fine details. In contrast, it would 
be difficult to recognize the changes in the traditional 
polygonal chart. 
 

 
 

3. EMACI: THE PROPOSED TECHNIQUE 
 
Let us define a target function of an optimization problem as: 

),...,,( 21 nxxxfs =   …(1) 

Figure 2. (Left) Visualization by two-tone pseudo color. 
(Right) Visualization by traditional polygonal chart. 



where we would like to discover the maximum s value and the 
set of parameters 1x  to nx . Here EMACI visualizes the 
progression of a GA and provides a user interface to 
interactively control the configuration of a GA. 
Processing flow of EMACI is as follows: 
1. Initialize the GA. 
2. Perform selection, crossover, and mutation, as shown in 

Figure 1. 
3. Evaluate the genes and specify the maximum s value, 

and 1x  to nx  which produce the maximum s .  

4. Visualize 1x  to nx  using two-tone pseudo coloring. 
5. Perform terminate check, as shown in Figure 1, and 

terminate if the progression satisfies the conditions. 
6. Occasionally pop-up a dialog window to control the 

configuration of the GA, and close the dialog after a 
while (i.e., 10 seconds later). 

7. Return to 2. 
 

 
 
Figure 3 shows an example of visualization of 4 parameters 
during the progression of a GA. The horizontal axis denotes 
the generation of the GA, and colored belts represent the 
changes in parameter values. Here we represent the parameter 
values as follows, similar to that which is described in [10]: 
• Specify the range of a parameter ix  as ]max,[min ii

. 

• Define intervals mB iii /)min(max −= . 

• Let 
iiij jBA += min . 

• Define )1( +m  colors 0C  to mC .  

• For each generation,  
- Specify j that satisfies 

)1( +<< jiiij AxA . 

- Paint the vertical line segment at ix  with two colors 

jC  and )1( +jC . Divide the line segment into two parts 

so that the ratio of the length of the lower part is 

iiji BAx /)( − , and use jC  for the upper part and 

)1( +jC  for the lower part. 

This visualization represents changes in parameter values as 
the changes of combinations or widths of two colors. It can 
inform users of slight changes in parameter values, as 
discussed in Section 2.4. Users can acquire a great deal of 
information from the visualization, for example: 
• Even if every parameter is stable in long generations, 

one may not be sure whether the progression has already 
arrived at the global optimal solution. One may want to 
encourage mutations to drastically move the parameter 
space. 

• A specific parameter is always stable in whole 
generations. One may want to narrow the range of the 

parameter for a more stable progression and accurate 
solution. 

EMACI provides a dialog window to change the configuration 
of the GA so that users can interactively employ their acquired 
knowledge from the visualization. Figure 4 is an example of 
the dialog window. Our implementation can control the 
frequency of the pop-up of the dialog window: pop-up for 
every generation, once in several generations, only when 
every parameter is stable for long generations, and so on. 
 

 
Figure 4. Example of a dialog window to control the 
configuration of GA. 
 

4. EXAMPLE 
 
We implemented EMACI in Java 1.5, and executed it on an 
IBM ThinkCentre with Windows XP. Our current 
implementation defines 6 colors 0C  to 5C , which are blue, 
sky blue, moss green, yellowish green, bright yellow, and red. 
Figure 5 denotes the colors and ratio of their lengths in our 
implementation. 

 
As a simple example problem, we also developed a target 

function which requires 10 parameters and contains 6 local 
optimal solutions. Ranges of all parameters are 0.0 and 1.0. 
Return values of the target function are normalized so that the 
return value of the global optimal solution is 1.0. 
Figure 8 shows an example of the visualization of the time 

sequence of 10 parameters during the GA process. The upper 
part of the figure shows the best parameters during 1 to 75 
generations, and the lower part shows them during 76 to 150 
generations. The figure denotes that the values of the best 
parameters drastically changed during generations1 to 40, then 
stayed during generations 40 to 90 , and slightly changed 
several times during generations 90 to 150. 
When the best parameters stay during long generations, it is 

often better to change the configuration of the GA. Our 
current implementation pops-up the dialog window shown in 
Figure 4, when the best parameters do not change during 10 
generations. In this experiment we changed the following 
configurations: the probability of crossover, the probability of 
mutation, and the percentage of elites. 
Table 1 shows the statistics of the GA results based on 

changing configurations during the repetition of the GA 
process. In this table “Global optimal” denotes the ratio of 
results that GA arrived around the global optimal solution, not 
local optimal solutions, where larger values are better. 
“Average” denotes the average of the best values of the target 
function, where larger values are better. The results that the 
interactive changes in configuration values brought better 
results: a change in the probability of crossover and the 
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Figure 3. Visualization of parameters. 

min max 

Figure 5. Colors used in our implementation.



percentage of elites brought better values of target functions, 
and the probability of mutation brought a better ratio 
approximating the global optimal solution. We would like to 
more carefully analyze the effect of interactive change in 
future work. We also would like to have more experiments 
with more complicated target functions, additional 
configuration changes, and non-expert examinees. 
 

Table 1 statistics of GA results changing the configurations. 
Interactive change Global optimal Average 
None 0.48 0.9781
Probability of crossover 0.52 0.9911
Probability of mutation 0.88 0.9729
Percentage of elites 0.60 0.9817
 

5. APPLICATION TO CELL SIMULATION 
 
This section introduces an application of EMACI to the 
parameter optimization of heart cell simulation [2]. 

The human body is a very complicated mechanism, and 
analyzing it is therefore a difficult problem. Recently there 
have been many studies to compute the biological functions, 
including organs, blood circulation, and energy vicissitude, to 
clarify this complicated mechanism. Cell simulation is an 
active research topic, because the cell is the smallest and most 
fundamental unit of human body. 

We are applying EMACI to a heart cell simulation model 
[2]. The model is designed so that it realistically reacts 
according to an environmental change or an external impulse. 
We expect that such computer simulations can contribute not 
only to clarify the complicated mechanism of the human body, 
but also to improve advances in medical treatments and drug 
design. 
The heart supplies blood to the entire body during the life of 

a human. This organ is comprised of muscular pumps, and it 
continues to work thanks to action potential and to ions 
around heart cells. Pulses of the action potential are generated 
approximately once per second, and then densities of the ions 
drastically change according to the changes of the action 
potentials. These pulses cause the heart muscles to contract, 
pushing blood outside the heart. All the heart cells work 
together for this mechanism to make a heartbeat. 

 
Changes in densities of ions result in the pulses of action 

potential. Here, ion channels of cell membranes work as doors 
to control the densities of ions. Cell membranes themselves do 
not allow for the transport of ions; however, the ions can 
transport when so-called ion channels open. Each ion channel 
transports only its specific ion: therefore, the ion channels are 
categorized according to the specific ion, such as the natrium 

channel, the kalium channel, the calcium channel, and so on. 
Figure 6 briefly denotes the mechanism. 
The cell simulation model [2] calculates the temporal value  

of the action potential of the cell, and its error against the real 
measurement. Our approach treats the error as the target 
function, and the related values of ions—such as electric 
current—as parameters. EMACI visualizes the exploration of 
the values of ions to discover the optimal solution of the cell 
simulation. 
Figure 7 shows an example of a visualization of a GA 

process for heart cell simulation. Here our implementation 
applies 4 parameters shown in Table 2 during the GA process. 
This figure shows that parameters were drastically changing 
during the early stage of GA process, but that the parameter 
space stabilized during the later stage. 
 

 
Figure 7. Example of a visualization of a GA process for heart 
cell simulation. 
 

Table 2. Parameters applied in our implementation. 
Name Description Range (pA) 
ICaL Voltage-dependent L-type Ca+ 

channel. 
[4500.0, 5500.0]

IK1 Inwardly-rectifying K+ 
channel. 

[1.0, 3.0] 

IKr Quickly-delayed-rectifier K+ 
channel. 

[0.025, 0.045] 

IKs Slowly-delayed-rectifier K+ 
channel. 

[0.01, 0.05] 

 
6. CONCLUSTION 

 
This paper presented EMACI, a technique for the visualization 
of GA processes. It represents the time sequence of multi-
dimensional parameters by applying two-tone pseudo coloring, 
so that users can easily look over the change in parameter 
values during the GA processes. It also provides a user 
interface to flexibly control the configuration of the GA 
process. The paper provided the results demonstrating the 
effect of EMACI, as well as an application to cell simulation. 
Our future work will include the following issues: 
• Feasibility tests using target functions which require 

large numbers of parameters. 
• Experiments with additional configuration changes, such 

as changes in ranges of parameters. 
• Experiments with non-expert users. 
• Proof of the contribution of EMACI to the cell 

simulation. 
• Combination with other visualization techniques [3,4]. 
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Figure 8. Example of visualization of time sequence of 10 parameters during the GA process. 
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