
Volume Thinning for Automatic Isosurface Propagation

Takayuki ITOH� Yasushi YAMAGUCHI�� Koji KOYAMADA�

Tokyo Research Laboratory, IBM Japan�

Graduate School of Arts and Sciences, The University of Tokyo��

IBM Japan, 1623-14 Shimotsuruma, Yamato, Kanagawa 242 JAPAN

itot@trl.ibm.co.jp� yama@graco.c.u-tokyo.ac.jp��

Abstract

An isosurface can be e�ciently generated by visiting

adjacent intersected cells in order, as if the isosurface

were propagating itself. We previously proposed an ex-

trema graph method, which generates a graph connect-

ing extremum points. The isosurface propagation starts

from some of the intersected cells that are found both

by visiting the cells through which arcs of the graph pass

and by visiting the cells on the boundary of a volume.

In this paper, we propose an e�cient method of

searching for cells intersected by an isosurface. This

method generates a volumetric skeleton consisting of

cells, like an extrema graph, by applying a thinning al-

gorithm used in the image recognition area. Since it

preserves the topological features of the volume and the

connectivity of the extremum points, it necessarily in-

tersects every isosurface. The method is more e�cient

than the extrema graph method, since it does not re-

quire that cells on the boundary be visited.

1 Introduction

In the area of numerical simulation, visualization
tools that support a function for the continuous display
of isosurfaces with changing scalar values are used to
understand the distribution of scalar �elds.

Elimination of non-intersected cells outside the pro-
cess is one of the most e�ective approaches to devel-
oping fast algorithms for generating isosurfaces, since
the number of cells intersected by an isosurface is re-
garded as O(n2=3). E�cient algorithms that classify
or sort cells according to their scalar values [1, 2], or
space-subdivide cells [3], have been proposed. They
do not visit many non-intersected cells, since the cells
to be visited are grouped in a pre-process. However,
the number of cells visited in these algorithms is still
estimated as O(n).

Livnat, Shen, and Johnson have reported a span-
space-decomposition algorithm [4], in which cells are
categorized by using a Kd-tree. This algorithm is more
e�cient than the abovementioned methods, since the
number of cells visited in the algorithm is estimated
as O(n1=2 + k). In the worst case, however, it requires

O(n2) computational time for the construction of the
Kd-tree.

Polygonization algorithms of implicit functions [5,
6] visit adjacent cells intersected by an implicit surface
in order, and a surface is generated as if it were prop-
agating itself. Here, an adjacent cell means a cell that
shares a face with the visited cell. These propagation
algorithms are used to generate an isosurface in a vol-
ume dataset [7, 8]. The algorithm is e�cient, sice it
visits only intersected cells, however, it requires that
the starting cells for propagation are speci�ed. When
an isosurface consists of multiple disjoint parts, start-
ing cells in all the parts must be speci�ed. Silver and
Zabusky have reported a space-subdivision algorithm
[9] in which extremum points are �rst extracted and
cells around them are then divided into subgroups by
using a spatial structure such as an octree. All start-
ing cells are e�ciently found by visiting cells in such
the structure. The cost of the searching process is re-
garded as O(n), and may be higher than that of the
propagation process.

Two of the present authors, Itoh and Koyamada, re-
ported a more e�cient algorithm for detecting starting
cells by reducing the number of visited cells in a pre-
process[10]. In the pre-process, extremum points are
�rst extracted and then connected as a graph. Cells
through which arcs of the graph pass, as well as cells
touching the boundary of the volume, are registered in
a list. The cells in the list are visited to �nd the start-
ing cells for propagation. Here, the number of cells on
the arcs of the graph is regarded as O(n1=3), and the
number of cells on the boundary is regarded asO(n2=3).

In this paper we propose a method for generating
a volumetric skeleton consisting of cells, like an ex-
trema graph. The thinning method for image recogni-
tion is used to generate a skeleton. A skeleton is gener-
ated in O(n) computational time, because the thinning
method visits most cells once. Since the skeleton pre-
serves the topological features of the volume and the
connectivity of the extremum points, it necessarily in-
tersects every isosurface. The method is more e�cient
than the extrema graph method, since it does not visit
cells on the boundary of a volume, and the cost of
searching for intersected cells is therefore regarded as
O(n1=3).

2 Related work

2.1 Isosurface propagation

In an isosurface propagation algorithm, the IDs of
adjacent intersected cells are put into a FIFO queue
when an intersected cell is visited. Enqueued cells are
marked so that they are not enqueued twice. The cells
are visited in that order by dequeuing from the FIFO
queue. A set of patches is e�ciently generated by re-
peating this process until the FIFO queue becomes
empty. The propagation algorithm has a great ad-
vantage in e�ciency, since it does not visit any non-
intersected cells. However, it has the problem that the
starting cells must be speci�ed in advance.

2.2 Extrema graph method

The extrema graph method [10] can detect all start-
ing cells for the isosurface propagation. It uses the
following rules governing the relationship between an
isosurface and a volume:

Rule: If there is a closed isosurface, then there exist
extremum points both inside and outside of the
isosurface. If there is an open isosurface, then
the isosurface intersects the boundary of of the
volume.

According to the above rules, cells intersected by a
closed isosurface are found around an inner extremum
point, and cells intersected by an open isosurface are
found on the boundary.

In the pre-process, extremum points are �rst ex-
tracted. Extremum points are de�ned as nodes whose
scalar values are higher or lower than the values of all
adjacent nodes. In our implementation, the scalar val-
ues of all nodes for each cell are compared. All nodes
except the maximum-valued ones are marked as "not
maximum." Similarly, all nodes except the minimum-
valued ones are marked as \not minimum." After the
values in all cells have been compared, only nodes that
have either a \not maximum" or \not minimum" mark
are extracted as extremum points.

The closest unselected pair of extremum points is
then selected, and adjacent cells are traversed in order,
starting from one of the selected extremum points. The
traverse continues until it arrives at the other selected
extremum point, and visited cells are registered in a
list. This process is repeated until all extremum points
are connected to form a graph. At the same time,
boundary cells are registered in a list and sorted ac-
cording to the minimum and maximum values of their
nodes (see Figure 1).

When a scalar value is speci�ed, cells in the extrema
graph and the sorted boundary cell list are visited. At
least one intersected cell is necessarily found, and every
isosurface having the speci�ed scalar value is generated

Arc

Max. Min.Arc.

Boundary
cell lists

Cell list
of a graph

Extremum point

Figure 1: Extrema graph and boundary cell lists.

by the propagation algorithm. This method necessar-
ily extracts intersected cells in all disjoint parts of an
isosurface.

2.3 Cost of the extrema graph method

The pre-process of the extrema graph method consists
of the following three parts: sorting cells on the bound-
ary, extracting extremum points, and connecting ex-
tremum points. The cost of sorting cells on the bound-
ary is regarded as O(n2=3 log n2=3), since the surfaces
of boundaries are nearly planar and the number of cells
on a boundary is therefore regarded as O(n2=3). The
cost of extracting extremum points is regarded as O(n),
since all cells are visited once. In the part of the pro-
cess in which extremum points are connected, closest
pairs of extremum points are selected and cells between
the two extremum points are then traversed in order.
The cost of traversing cells is regarded as O(n1=3). The
cost of selecting a close extremum point is regarded as
O(m logm), wherem denotes the number of extremum
points. This process is repeated m times, and there-
fore the total cost is regarded as O(m2 logm). In many
cases this is not expensive, since m is much smaller
than n. Table 4 in Itoh and Koyamada [10] shows that
this part is not costly in any of the four datasets. How-
ever, it may be very expensive if m is large, especially
in unconverged or noisy volumes.

The main process of the extrema graph method
consists of three parts: searching for intersected cells
in the extrema graph, searching for intersected cells
on the boundary, and propagating an isosurface. The
number of cells in a set of arcs is regarded as O(n1=3)
if all of the arcs are nearly straight. The number
of boundary cells is regarded as O(n2=3) if the entire
boundary is nearly planar. The number of visited cells
in isosurface propagation is regarded as O(n2=3). The
extrema graph method is especially e�cient for large
volumes, since the cost of generating an isosurface is
smaller than O(n). Table 5 in Itoh and Koyamada [10]
shows that the extrema graph method is faster than
other methods, especially for large volumes. This re-

sult is also shown in Table 3 of the present paper.

2.4 Topology of an extrema graph and

an isosurface

In the extrema graph method, the cost of searching for
intersected cells is governed by the number of cells on
the boundary, which is regarded as O(n2=3). Here we
consider of the necessity of sorted boundary cell lists.

(a) Extrema graph

: Extremum points

: Registered cells
: Hole

: Isosurface

Found !

Found !Can’t be found ! Found !

(b) Extrema graph
 and boundary

Found !
(c) Contains the
topological feature

Figure 2: Topology of an extrema graph and an isosur-
face.

Unstructured volumes may have through-holes or
voids. In this paper, a through-hole is de�ned as a
topological feature that causes a genus of a boundary.
A void is de�ned as an empty space enclosed by a dis-
continuous part of the boundary of a volume. Though
an isosurface is not separated by a void, it may be sep-
arated by a through-hole.

Figure 2 shows an example of a volume which
has a through-hole. An isosurface may be separated
into multiple discontinuous parts when a volume has
through-holes. In such volumes, an extrema graph does
not necessarily have intersections with all parts of the
separated isosurface. Therefore, cells on the bound-
ary are visited, and consequently cells intersected by
an open isosurface are necessarily found (see Figure 2
(b)).

If an extrema graph contains such topological fea-
tures, i.e., cycles corresponding to through-holes of a
volume, it necessarily intersects all parts of an isosur-
face (see Figure 2 (c)). Sorted boundary cell lists will
not be necessary, and the cost of searching for inter-
sected cells by using such an extrema graph will be
O(n1=3).

We applied the thinning method, which is used in
the image recognition area, to generate a skeleton of
a volume that consists of cells containing topological
features of volumes. In the next section, we describe
how we apply the thinning method to unstructured vol-
umes.

3 Volume Thinning for Isosurface Gen-
eration

3.1 Thinning Method

Thinning [11] is a technique for generating a skeleton
features of an image. Essentially, it is a technique
for analyzing and recognizing the features of �gures
in the image-processing area. It generates a skeleton
of a one-pixel-wide painted area by eliminating pixels
that touch the boundary of the area if they are de-
termined to be unnecessary. This process is repeated
until all unnecessary pixels have been eliminated and
all the remaining pixels touch the boundary of the area.
Various conditions for determining a visited pixel's ne-
cessity have been proposed, for example,

� If all the adjacent painted pixels (8 pixels at max-
imum) that share a vertex or an edge with the
visited pixel cannot be visited by traversing ad-
jacent pixels in order, the visited pixel should
not be eliminated, because doing so many create
a blank spare in the printed area.

� If the visited pixel has only one adjacent painted
pixel that shares an edge, the visited pixel can-
not be eliminated, because the visited pixel is the
edge of the line of the painted area.

As shown in Figure 3 (a), p is the current pixel and
its adjacent pixels are numbered from 1 to 8. The black
pixels in Figure 3(b)-(e) are the remaining painted pix-
els. In cases (b) and (c), the visited pixels can be elim-
inated, since all the painted pixels can be traversed in
order (7, 8, 1 in Figure 3(b), and 4, 5, 6, 7, 8 in Figure
3(c)). On the other hand, the visited pixels cannot be
eliminated in cases (d) and (e).

Figure 3 (g) shows an example of a skeleton gener-
ated by the thinning method, using the image shown in
Figure 3 (f). The skeleton contains topological features
such as genus of the painted area, and the thinning
method is therefore used to understand the geometry
of the images.

3.2 Volume Thinning

In this section we describe how to use the thinning
method to generate a skeleton that connects all ex-
tremum points and contains the topological features of
a volume. Cells that touch the boundary are visited,
and unnecessary cells are eliminated outside the pro-
cess in our method, in the same way that unnecessary
boundary pixels were eliminated in the existing thin-
ning method. The process is repeated until all cells in
a volume have been visited at least once and a one-cell-
wide skeleton has been generated.

In our method, each cell that touches an extremum
point is marked \KEEP", and will never be elimi-
nated during the thinning process. Though many un-

(a) (b) (c) (d) (e)

p p pp p

(f) (g)

1 2 3
4
56

8
7

Figure 3: Thinning of an image

marked cells are then eliminated, the connectivity of
the marked cells is retained. When all unmarked cells
have been visited by the thinning method, a skeleton
consisting of cells is generated. The skeleton contains
the topological features of the volume, such as through-
holes or voids [12]. Cycles of cells are generated around
through-holes, since the skeleton contains the cycle of
through-holes. Layers of cells like bubbles are gener-
ated around voids, since the skeleton retains any dis-
continuities of boundary faces around voids. See Figure
4 (b). The number of bubble-like layers of cells is re-
garded as O(n2=3). In our method, these layers of cells
around voids are eliminated, because isosurfaces can-
not be separated by voids, while cycles of cells around
through-holes are preserved. A layer of cells has two
discontinuous groups of boundary faces, namely, in-
ner boundary faces originating to the void and outer
boundary faces. These faces are connected by elimi-
nating some cells in the layer. This process looks like
pricking a hole in a layer of cells. The thinning process
is then restarted by visiting cells adjacent to the elimi-
nated cells, and many cells in the layer are �nally elim-
inated. By pricking all the layers of cells around voids,
a smaller skeleton is generated in which the number of
cells is regarded as O(n1=3). See Figure 4 (c).

Void

Through−hole

Eliminate!

Skeleton

Layer of cellsPrick!

Cycle around
 a through−hole

Marked!

(a) Thinning process start

(b) Pricking process start

(c) Thinning process completed

Figure 4: Volume thinning.

Though our method can be applied to both struc-
tured and unstructured volumes, in this paper we de-
scribe its application only to volumes consisting of un-
structured tetrahedral or hexahedral cells.

The conditions for determining the necessity of a
visited cell are de�ned similarly to those of existing
thinning methods, described in Section 3.1. A cell is
determined to be necessary if not all of its adjacent
cells can be traversed along shared edges or nodes.
However, this condition is not su�cient for minimiz-
ing the skeleton. Figure 5 shows an example of the
accidental generation of a loop in the skeleton. A cell
C has a node (or an edge), that is shared by its ad-
jacent cells and is on the boundary of the skeleton. If
C is eliminated, a cycle is generated and may remain
in the skeleton after the thinning process is completed.
C should therefore not be eliminated, since the gen-
eration of a cycle increases the number of cells in the
skeleton. On the other hand, if the shared edge or node
is not on the boundary but inside the cells, all adjacent
cells of C can be traversed. In our method, the shared
edge or node of the visited cell is checked if it is on the
boundary, to determine the necessity of the cell.

C

Thinning completed !

Node shared by
 3 adjacent cells

Extremum point

Shared node
(on the boundary)

Accidentally generated loop

Figure 5: An Accidentally generated loop in a skeleton.

The number of cells in a skeleton obtained by the
thinning method is regarded as O(n1=3), and it is usu-
ally smaller than the number of cells on the boundary.
This method is therefore more e�cient than the ex-
trema graph method, since the number of visited cells
for detecting intersected cells is smaller.

This method has other advantages. The cost of
generating a skeleton is regarded as O(n) and does not
strongly depend on the number of extremum points.
When a volume has many extremum points, the thin-
ning method is therefore more e�cient and stable than
the cost of the extrema graph method. It is also easy
to implement, since it does not include geometric op-
erations.

4 Implementation

In this section, we discuss an implementation of
our method. The pseudo-code of the volume thinning
method for tetrahedral cells is also shown in Figure 6.

The method consists of three processes: setup, thin-
ning and pricking, and registration.

void VolumeThinning()f
/* Setup process */

Classify and enqueue cells;

Number boundary faces and nodes;

/* Thinning and pricking process */

while (1)f
if(C1 FIFO is not empty) Process a C1 cell;

else if(C2 FIFO is not empty) Process a C2 cell;

else if(C3 FIFO is not empty) Process a C3 cell;

else if(C4 FIFO is not empty) Process a C4 cell;

else if(There are layers around voids)

Prick one of the layer;

else break;

g
/* Registration process */

Extract non-C0 cells;

Classify the extracted cells by scalar values;

g

Figure 6: Algorithm of the volume thinning method
for tetrahedral cells.

4.1 Setup of the thinning method

Our study assumes that a volume has the following
data structures. It also assumes that all nodes are lo-
cated at vertices of cells, and that a scalar value at an
arbitrary position is calculated by linear interpolation.

Cell: A cell has pointers to its nodes, pointers to its
adjacent cells, and a
ag for its classi�cation.

Node: A node has a position value, a scalar value,
and a
ag showing which void (or the boundary)
it touches.

Boundary face: A boundary face is de�ned as a face
of a cell that is not shared by another cell. It has
a pointer to its cell, and a
ag showing which
void (or the boundary) it touches.

Extremum point: An extremum point has a pointer
to its node, and a pointer to one of cells that
touch the extremum point. All extremum points
are extracted by an algorithm described in Itoh
and Koyamada [10].

First, cells are classi�ed by the number of their
adjacent cells, and the classi�cations are described
as Cn (n = 0; 1; 2; 3; 4, for tetrahedral cells, n =
0;1; 2; 3; 4; 5;6, for hexahedral cells). At the same time,
FIFO queues for Cn (n = 1; 2; 3; 4, for tetrahedral
cells, and n = 1; 2; 3; 4; 5; 6, for hexahedral cells) are
allocated. Cells that touch extremum points are �rst
marked \KEEP". Other cells on the boundary are en-
queued in the FIFO queue in order. In the main loop of

volume thinning, a cell is visited by dequeuing it from
a FIFO queue, and its classi�cation is altered to C0 if
it is determined to be unnecessary. The classi�cations
of all adjacent cells of the visited cell are also altered
from Cn to Cn�1, and they are enqueued into the Cn�1

FIFO queue, unless they are marked \KEEP". The
classi�cations denote the number of adjacent non-C0

cells during and after the main loop process. The C0

cells will be eliminated so that it does not belong to
the skeleton when the thinning is �nished.

At the same time, all boundaries, i.e., voids and
an outer boundary, are numbered, and boundary faces
that form a boundary are then marked with the num-
ber of the boundary. All nodes that are adjacent to
the boundary face are also marked with the number of
that boundary. All the other nodes are marked with
another number indicating that they lie inside the vol-
ume. When a visited cell is altered to C0, all its nodes
numbered as inside are re-marked with the number of
the boundary that the other nodes have touched.

4.2 Main loop of the thinning process

After the setup process, cells are dequeued from the
FIFO queues. Many of them are determined to be
unnecessary, and altered to C0, i.e., eliminated from
the volume. In our implementation, all C1 cells are
dequeued �rst, since the topology of the skeleton is
not changed by the elimination of C1 cells. C2 cells are
visited when the C1 FIFO queue is empty. If any C2

cell is altered to a C1 cell and put into the C1 FIFO
queue caused by the elimination of an adjacent C2 cell,
it is dequeued before the remaining C2 cells. C3 cells
are visited when both the C1 and C2 FIFO queues are
empty. If any C3 cell is altered to a C2 cell and put
into the C2 FIFO queue caused by the elimination of
an adjacent C3 cell, it is dequeued before the remaining
C3 cells. C4 and C5 cells are similarly dequeued when
all of the FIFO queues up to C3 and C4, respectively,
are empty, in the case of hexahedral cells.

All dequeued C1 cells are altered to C0 cells, since
the topology of the skeleton is not changed by their
elimination. In the case of C2, C3, C4, C5, and C6

cells, only cells that satisfy the following conditions are
altered to C0 cells. Some cells turn out to be necessary
and remain after the thinning process is completed.
These cells form cycles around through-holes, or layers
around voids, preserving the topological features of the
original volume.

In the case of volumes consisting of tetrahedral
cells, cells are processed according to the following con-
ditions:

Condition for C1 cells: All dequeued C1 cells are
altered to C0.

Condition for C2 cells: A C2 cell has an edge
shared by its two adjacent cells, Ca and Cb. Adja-

cent cells sharing the edge are traversed in order,
starting from Ca. If the edge is inside the vol-
ume, the traverse arrives at Cb and the dequeued
C2 cell will altered to a C0 cell. See Figure 7 (a).

Condition for C3 cells: A C3 cell has a node
shared by its three adjacent cells, Ca, Cb, and
Cc. If the node is numbered as inside of the vol-
ume, the dequeued C3 cell is altered to a C0 cell.
See Figure 7 (b).

Condition for C4 cells: All faces of a C4 cell are
adjacent to other cells. If a graph consisting of
the edges and the nodes that are outside of the
volume forms a simply connected tree, the de-
queued C4 cell is altered to a C0 cell. See Figure
7 (c).

Ca Cb

C2
C3

C3 is not necessary
 if the shared node is
 inside the skeleton.

C4

Outside node

Outside edge

C4 is not necessary
 if a graph consisting of outside
 edges and nodes forms a simply connected tree

(a) An edge shared by
 two adjacent cells

(b) A node shared by
 three adjacent cells

(This means that the shared
 edge is inside the skeleton.)

C2 is not necessary
 if the traverse arrives
 at Cb from Ca.

Figure 7: Conditions for tetrahedral cells.

In the case of volumes consisting of hexahedral cells,
C1, C2, C3, C4, and C5 cells are processed according
to similar conditions.

4.3 Elimination of cells in layers around

voids

Layers of cells around voids have discontinuous bound-
ary faces, some facing outside the volume and others
facing the voids. Both parts of faces can be connected
by eliminating some cells, like pricking a hole through
the layer.

In the case of tetrahedral cells, a cell in which two
nodes are marked with the outer boundary's number
and others are marked with some void's number is ex-
tracted �rst. Since the cells form a thin layer, the cell
should have two kinds of adjacent cells. One has a face
on the outer boundary, the other has a face on the void
boundary. Our algorithm extracts a set of those three
cells and alters to C0 cells. According to this elimina-
tion, the classi�cations of their adjacent cells are also
altered, and they are enqueued into the FIFO queues.

The above process is executed when all FIFO
queues are empty, and is repeated until all layers have
been pricked.

In the case of hexahedral cells, layers of cells around
voids can be eliminated by similarly pricking the layers.

4.4 Registration of cells

When the thinning and pricking processes are com-
pleted, non-C0 cells are extracted to form a skeleton.
In our implementation, cells are registered in several
arrays, each of which has a range of scalar values. A
cell is registered in an array if at least one node of
the cell has a scalar value that lies within the range of
the array. When a scalar value is speci�ed by a user
or automatically, cells registered in one of the arrays
whose speci�ed value is within the range are visited
and intersected cells are found.

5 Benchmark tests

This section gives the result of some benchmark
tests of our thinning method in comparison with the re-
sults of other methods [2, 1, 10]. The tests were carried
out on an IBM PowerStation RS/6000 (Model 560).
Five datasets for unstructured volumes consisting of
tetrahedral cells, which contain the result of numerical
simulations, were used for the tests.

The skeleton of a volume, Dataset no. 1, is shown
in Figure 8. The color of a cell is given by the num-
ber of its adjacent cells registered in the skeleton. A
yellow cell has only one adjacent registered cell, and
is located at the end of a line. It coincides to an ex-
tremum point. A blue cell has two adjacent registered
cells and a red cell has more than three adjacent reg-
istered cells. Figure 10 shows an example of isosurface
generation. Starting cells in all discontinuous isosur-
faces having the same scalar value are detected and
the isosurfaces are then propagated.

The skeleton of another volume, Dataset no. 2, is
shown in Figure 9, where the color of a cell represents
not its adjacency but its scalar value. The volume rep-
resents a human as a through-hole and a box as a void.
The through-hole starts from one foot, goes through
both of the legs, and ends up in the other foot. In the
skeleton, the cycle of a through-hole is contained by a
line of cells passing between the legs. Figure 11 shows

an example of generated isosurfaces.
The volume thinning method and the extrema

graph method [10] were compared in terms of the num-
ber of cells and the performance of each process in gen-
erating cell lists.

Table 1: Numbers of registered cells and performance
in generating cell lists.

Dataset 1 2 3 4 5
Nc 20736 61680 346644 557868 458664
Ngp 4002 11624 62107 97473 80468
Nep 21 46 135 540 5986
Nc1 2516 6480 20158 28086 121492
Nc2 436 1365 3757 10967 55536

Tft (sec.) 0.19 0.52 2.75 4.76 3.66
Tst (sec.) 1.15 4.12 47.95 52.29 63.60
Teg (sec.) 0.58 1.53 7.46 14.51 76.78
Tvt (sec.) 1.13 3.22 16.93 26.86 23.22

In Table 1,

� Nc is the number of tetrahedral cells (including
boundary cells).

� Ngp is the number of grid points.

� Nep is the number of extremum points.

� Nc1 is the number of registered cells in the extrema
graph method, i.e., the total numbers of cells in an
extrema graph and on the boundary.

� Nc2 is the number of registered cells in the volume
thinning method.

� Tft is the cost of generating cell lists in the �ltering
method [1].

� Tst is the cost of generating cell lists in the sorting
method [2].

� Teg is the cost of generating cell lists in the extrema
graph method [10].

� Tvt is the cost of generating cell lists in the volume
thinning method.

These processes for generating cell lists can be
treated as pre-processes of isosurface generation. The
cost of pre-processing in our two methods is smaller
than in Giles's method but larger than in Gallagher's
method in many cases.

The results show that the number of registered cells
obtained by volume thinning is much smaller than in
the extrema graph method. They also show that the
cost of generating the skeleton in volume thinning is
approximately proportional to the number of cells in a
volume.

Here we note that the cost of the extrema graph
method is not directly proportional to the number of
cells. The cost for Dataset no. 5 is very much higher
than for the other datasets, although there are fewer
cells than in Dataset no. 4. This result is caused by

the enormous number of extremum points. It is incon-
venient for users, since it makes impossible for them to
know the number of extrema points without counting
them. The volume thinning method generally gives
better results than the unstably performing extrema
graph method.

Next, the connectivity of cells in the skeletons is
analyzed.

Table 2: Number of cells in each classi�cation.
Dataset 1 2 3 4 5
C1 21 45 124 491 3208
C2 397 1259 3453 9552 20574
C3 17 61 178 875 15312
C4 1 0 2 49 16436

The results in Table 2 show that the number of
C1 cells is almost equal to the number of extremum
points, and that most cells are classi�ed as C2 cells.
This indicates that skeletons radiate from the centers
of volumes and that there are extremum points at the
ends of the skeletons.

Finally, the performance of methods for generating
isosurfaces is discussed. In the benchmark tests, a se-
ries of 20 isosurfaces were generated for each volume,
with various scalar values.

Table 3: Performance in generating isosurfaces.
Dataset 1 2 3 4 5
Nt 67875 80995 135358 1164616 494480
Nv 34921 43158 71358 588796 251506

Tft (sec.) 5.78 8.36 25.51 107.89 59.31
Tst (sec.) 5.69 6.85 15.24 100.92 53.48
Teg (sec.) 3.31 4.18 7.56 57.72 26.49
Tvt (sec.) 3.27 3.96 7.22 57.12 25.21

In Table 3,

� Nt is the number of patches in 20 isosurfaces.

� Nv is the number of vertices in 20 isosurfaces.

� Tft is the total time in the �ltering method [1].

� Tst is the total time in the sorting method [2].

� Teg is the total time in the extrema graph method
[10].

� Tvt is the total time in the volume thinning method.

These results show that our two methods are more
e�cient than other methods in most cases. They also
show that the volume thinning method is more e�cient
than the extrema graph method. The reason for this
is that the number of registered cells in the volume
thinning method is smaller that in the extrema graph
method, as shown in Table 1.

Table 4 shows the cost of searching for intersected
cells by visiting the registered cells.In Table 4,

Table 4: Performance of searching for intersected cells.
Dataset 1 2 3 4 5
Tft (sec.) 3.13 5.95 22.59 65.08 40.20
Tst (sec.) 2.24 2.86 8.65 42.65 26.86
Teg (sec.) 0.71 0.98 2.07 12.14 6.35
Tvt (sec.) 0.65 0.74 1.76 11.58 5.27

� Tft is the time spent searching for intersected cells in
the classi�ed cell lists, in the �ltering method.

� Tst is the time spent searching for intersected cells in
the sorted cell lists, in the sorting method.

� Teg is the time spent searching for intersected cells
in an extrema graph and boundary cell lists, and
traversing adjacent intersected cells, in the extrema
graph method.

� Tvt is the time spent searching for intersected cells in
a skeleton, and traversing adjacent intersected cells,
in the volume thinning method.

Table 5 shows the numbers of visited cells.

Table 5: Numbers of visited cells.
Dataset 1 2 3 4 5
Nft 89548 179088 786220 1927026 1278742
Nst 51348 61766 101951 879735 378712
Neg 54420 66618 115639 907319 550605
Nvt 51762 63089 105762 890134 436658

In Table 5,

� Nft is the number of visited cells in the �ltering
method.

� Nst is the number of visited cells in the sorting
method.

� Neg is the number of visited cells in the extrema
graph method.

� Nvt is the number of visited cells in the volume thin-
ning method.

These results show that the volume thinning
method reduces the cost of searching for cells inter-
sected by an isosurface.

6 Conclusion

This paper has proposed a volume thinning method
for generating a skeleton that can be used in search-
ing for intersected cells in isosurface propagation. It is
more e�cient than other methods, since the number of
registered cells used in searching for intersected cells is
regarded as O(n1=3). The cost of pre-processing is re-
garded as O(n). The volume thinning method is more
stable than the extrema graph method, since it is not
heavily dependent on the number of extremum points.

Acknowledgments

We would like to thank K. Shimada, manager of
Graphics Applications at Tokyo Research Laboratory
(TRL), IBM Japan, and K. Shimizu, manager of Ad-
vanced Graphics at TRL, for their encouragement in
this work.

References

[1] Gallagher, R. S.: \Span Filtering: An Optimiza-
tion Scheme for Volume Visualization of Large Fi-
nite Element Models," IEEE Visualization '91, pp.
68-74, 1991.

[2] Giles, M., and Haimes, R.: \Advanced Interac-
tive Visualization for CFD," Computer Systems
in Engineering, Vol. 1, No. 1, pp. 51-62, 1990.

[3] Welhelms J., and Gelder A. Van, \Octrees for
Fast Isosurface Generation," ACM Transactions
on Graphics, Vol. 11, No. 3, pp. 201-227, 1992.

[4] Livnat Y., Shen H., and Johnson C. R.,: \A Near
Optimal Isosurface Extraction Algorithm Using
the Span Space," IEEE Transactions on Visual-
ization and Computer Graphics, Vol. 2, No. 1, pp.
73-84, 1996.

[5] Wyvill G., McPheeters C., and Wyvill B.: \Data
Structure for Soft Objects," The Visual Com-
puter, Vol. 2, No. 4, pp. 227-234, 1986.

[6] Bloomenthal J.: \Polygonization of Implicit Sur-
faces," Computer Aided Geometric Design, Vol. 5,
No. 4, pp. 341-355, 1988.

[7] Speray, D., and Kennon, S.: \Volume Probe: In-
teractive Data Exploration on Arbitrary Grids,"
Computer Graphics, Vol. 24, No. 5, pp. 5-12, 1990.

[8] Howie C. T., and Blake E. H.: \The Mesh Prop-
agation Algorithm for Isosurface Construction,"
Computer Graphics Forum (Eurographics), Vol.
13, No. 3, pp. C-65-74, 1994.

[9] Silver, D., and Zabusky, N. J.: \Quantifying Vi-
sualization for Reduced Modeling in Nonlinear
Science: Extracting Structures from Data Sets,"
Journal of Visual Communication and Image Rep-
resentation, Vol. 4, No. 1, pp. 46-61, 1993.

[10] Itoh, T., and Koyamada, K.: \Automatic Isosur-
face Propagation by Using an Extrema Graph and
Sorted Boundary Cell Lists," IEEE Transactions
on Visualization and Computer Graphics, Vol. 1,
No. 4, pp. 319-327, 1995.

[11] Pavlidis, T.: \Algorithms for Graphics and Image
Processing," Computer Science Press, 1982.

[12] Munkres J. R.,: \Topology: A First Course,"
Prentice-Hall, 1975.

Figure 8: Image (1)

Figure 9: Image (2)

Figure 10: Image (3)

Figure 11: Image (4)

