
Large-Scale Data Visualization with Two-Variate Level-of-Detail Control

1 INTRODUCTION

Space-filling approach, such as a series of TreeMaps algorithms,
is one of the popular approaches in hierarchical data visualization.
The original TreeMaps [1] represents the hierarchy as nested belt
chart (so called slice-and-dice), and then it has been improved by
squarifying or ordering the subregions representing the nodes of a
tree. These algorithms represent quantitative properties of nodes
as areas of subregions; however, it is often required that leaf-nodes
of a tree is displayed as equally-sized icons. Quantum TreeMaps
[2] is a variation of TreeMaps that represents leaf-nodes as equally-
sized icons or thumbnails while it attempts to quantize the widths
and heights of rectangular subregions so that the icons are well-
packed inside them. Against these series of TreeMaps divides
display spaces by top-down algorithms, another space-filling tech-
nique [3] represents trees as nested rectangular regions and equally-
sized icons applying a bottom-up algorithm.

We are applying space-filling hierarchical data visualization
techniques to the large-scale table data, as shown in Figure 2, which
is supposed as following.

• The data consists of a set of records R = {r1,r2, ..,rn}, where
n is the number of records.

• A record ri in the data has m variables, described as ri =
{ri1,ri2, ..,rim}.

Suppose that the data may contain thousands or even tens of thou-
sands of records, while a record has tens or even hundreds of vari-
ables. Our study divides the records according to the selected i-th
variable to construct a tree, and displays the tree by coloring the
nodes according to j-th (i �= j) variable. Though we would like
to basically apply a visualization technique which represents leaf-
nodes as equally-sized icons [2] [3], it may be nonsense when the
number of leaf-nodes is enormous and therefore they are too small
to comprehensively display. Or, it may be often difficult to un-
derstand the distribution of branches if there are too many under a
parent branch node.

This poster presents a combination of two level-of-detail (LoD)
control techniques which adaptively simplifies the visualization of
hierarchical data. We call the techniques as two-variate LoD con-
trol, because the two techniques realizes the LoD control according
to the distribution of the i-th and j-th variables.

The first technique merges branch nodes under a parent branch
node, as shown in Figure 2(c), to adaptively reduce the number
of branch-nodes to be drawn. Current our implementation prepares
two criteria to merge the branches. The first criterion is based on the
number of children nodes: the implementation aggressively merges
the branch nodes that have smaller number of children nodes. The
second criterion is based on distribution of the specified variables:
the implementation constructs histogram of the variables of the
branch-nodes, and merges them if the distribution of histogram is
similar.

The second technique replaces a set of icons corresponding to
leaf-nodes under a branch-node as a set of sliced rectangles, as orig-
inal TreeMaps renders [1], to display overall information. It con-
structs a histogram of the values of j-th variables, and then slices

the rectangular region corresponding to the branch node according
to the histogram.

2 TECHNICAL DETAIL

2.1 Hierarchy Construction and Visualization
Our implementation firstly divides the records R according to the i-
th variable r1i to rni, to construct hierarchical data. Here, it is possi-
ble to recursively divide the leaf-nodes to construct deep hierarchy,
but current our implementation does not support it. It then assigns
colors calculated from j-th variable r1 j to rn j to the leaf-nodes of
the hierarchical data.

Our implementation then visualizes the hierarchical data by ap-
plying a space-filling technique which represents leaf-nodes as
equally-sized icons. Currently we apply TreeMaps-like space-
filling technique [3], but Quantum TreeMaps [2] can be also ap-
plied.

Our implementation activates the LoD control technique with
users’ operations, such as zooming operations, so that it displays
detailed information while zooming in, and overall information
while zooming out.

2.2 Level-of-Detail Control of Branch-Nodes
We observed the visualization results of the space-filling technique,
and determined that we can effectively simplify the visualization
based on the following two criteria.

2.2.1 Based on numbers of children nodes
Though small groups of information may be even important in some
cases, they are ignorable in other many cases. Our implementation
merges branch-nodes which have smaller number of children leaf-
nodes. Current our implementation merges the two branch-nodes
Bs and Bt if they satisfy the following criterion:

CN(Ns +Nt)< Nmax (1)

Here, CN is a positive constant value to control the LoD, Ns and Nt
are numbers of children leaf-nodes of Bs and Bt , and Nmax is the
maximum number of children leaf-nodes.

Our implementation firstly sorts the branch-nodes in a specific
depth of the hierarchy in the ascending order of the numbers of their
children leaf-nodes. It then picks up the first two branch-nodes in
the sorted list, and merges them if they satisfy the above criterion. It
also inserts the merged branch-node at the adequate position of the
sorted list. This process is repeated until no pairs of branch-nodes
can be merged.

2.2.2 Based on similarity of distributions of values
There may be many groups whose distributions of values look very
similar. Our current implementation merges such branch-nodes
whose distributions of values are similar. It firstly determines the
minimum and maximum values of the j-th variable which are used
to calculate colors of leaf-nodes in the whole data, and the di-
vides the range between minimum and maximum value into multi-
ple spans S = {s1,s2, ..,sNs}, where Ns is the number of spans. It
then counts the number of children leaf-nodes csk, whose values of
j-th variable belong to k-th span sk for the branch-node Bs. Con-
sequently, it constructs a histogram of the leaf-nodes consisting of
Ns ranks. Current our implementation then calculates the similarity



of statistics of j-th variable between two branch-node Bs and Bt by
the following equation:

Simst =
∑Ns

k=1 cskctk√
∑Ns

k=1(csk)2
√

∑Ns
k=1(ctk)2

(2)

Our implementation firstly calculates Simst for every possible
pairs of branch-nodes under the specified depth of the hierarchy. It
then sorts the branch-nodes in the descending order of Simst . It then
picks up the first two branch-nodes in the sorted list, and merges
them if the Simst is larger than a predefined value. It also updates
the sorted list by calculating Simst between the merged branch-node
and others. This process is repeated until no pairs of branch-nodes
can be merged.

2.3 Level-of-Detail Control of Leaf-Nodes
After merging the branch-node, our implementation switches rep-
resentation of leaf-nodes. When a user would like to simplify the
visualization result, our implementation represents the branch-node
as a set of slices of rectangular regions, as the original TreeMaps
does [1], instead of rendering the set of icons.

3 RESULT

Figure 1 shows an example of the visualization result by using the
presented technique. Figure 1(Upper) is a result of space-filling vi-
sualization of hierarchical data containing small groups in the red
rectangular regions. Figure 1(Center) is a result after applying the
LoD control of branch-nodes. The small groups disappeared by
the merge process, and consequently the visualization result is ef-
fectively simplified. Figure 1(Lower) is a result after applying the
LoD control of leaf-nodes. Here, pink rectangular regions in Figure
1(Center)(Right) shows that there are characteristic groups whose
distributions of the j-th variable are much different from those of
other groups. We think that these kinds of features can be easily dis-
covered after the LoD control of leaf-nodes. Also, we think these
kinds of branch-nodes should not be merged by the LoD control of
branch-nodes.

We can integrate the two criteria for merging branch-nodes de-
scribed in Section 2.2, though current our implementation alter-
natively applies them. We would like to integrate them and test
it as a future work. Other future issues include experiments with
various data, numerical and subjective evaluations, development of
more sophisticated user interface to effectively apply the LoD con-
trol, and development and experiments of LoD control with three
or more variables.

This work has been partially supported by Japan Society of the
Promotion of Science under Grant-in-Aid fir Scientific Research
(B) 13900008.

REFERENCES

[1] B. Johnson, B. Shneiderman, Tree-Maps: A Space Filling Approach
to the Visualization of Hierarchical Information Space, IEEE Visual-
ization ’91, pp. 275-282 (1991).

[2] B. Bederson, B. Schneiderman, Ordered and Quantum Treemaps:
Making Effective Use of 2D Space to Display Hierarchies, ACM
Transactions on Graphics, Vol. 21, No. 4, pp. 833-854 (2002).

[3] T. Itoh, Y. Yamaguchi, Y. Ikehata, Y. Kajinaga, Hierarchical Data Vi-
sualization Using a Fast Rectangle-Packing Algorithm, IEEE Trans-
actions on Visualization and Computer Graphics, Vol. 10, No. 3, pp.
302-313 (2004).

Figure 1: Example. (Upper)Before applying LoD control. (Center)
After applying LoD control of branch-nodes. (Lower) After applying
LoD control of leaf-nodes.

n records

m variables

(a) Table data
(b) Space-filling

visualization

(c) Merge of

branch-nodes

Figure 2: Processing flow.


