

AUTOMATIC CONVERSION OF TRIANGULAR
MESHES INTO QUADRILATERAL MESHES

WITH DIRECTIONALITY

Takayuki Itoh

{itot@computer.org}
IBM Research, Tokyo Research Laboratory

Kenji Shimada

{shimada@cmu.edu}
Mechanical Engineering, Carnegie Mellon University

Abstract

This paper presents a triangular-to-quadrilateral mesh conversion method that can control the directionality of

the output quadrilateral mesh according to a user-specified vector field. Given a triangular mesh and a vector

field, the method first scores all possible quadrilaterals that can be formed by pairs of adjacent triangles,

according to their shape and directionality. It then converts the pairs into quadrilateral elements in order of the

scores to form a quadrilateral mesh. Engineering analyses with finite element methods occasionally require a

quadrilateral mesh well aligned along the boundary geometry or the directionality of some physical

phenomena, such as in the directions of a streamline, shock boundary, or force propagation vectors. The

mesh conversion method can control the mesh directionality according to any desired vector fields, and the

method can be used with any existing triangular mesh generators.

Key Words: quadrilateral mesh, triangular mesh, conversion, directionality.

1. Introduction

In some types of finite element method (FEM) analyses, such as sheet-metal forming simulations and

automobile crash simulations, quadrilateral meshes are preferable to triangular meshes because they produce

more accurate results more efficiently. Such engineering analyses occasionally require a quadrilateral mesh

well aligned along the boundary geometry or the directionality of some physical phenomena, such as along

the directions of a streamline, shock boundary, or force propagation vectors .

Although there are many approaches to generating quadrilateral meshes, their capabilit ies of controlling the

mesh directionality are quite limited. The existing quadrilateral meshing approaches include: template

matching [1], medial-axis -based decomposition [2], quad-tree decomposition [3-5], advancing front [6-10],

and triangular-to-quadrilateral mesh conversion [11-21]. In this paper we focus on the triangle-to-quadrilateral

mesh conversion methods, which take advantage of the benefits of triangular mesh generation: (1) a fully-

automated meshing process, (2) flexible control of element sizes, and (3) less computation time than the

advancing front method. The advancing front methods [6-10] and the triangular-to-quadrilateral mesh

conversion methods [18 -20] control mesh directionality, but based only on the domain boundary; they cannot

create a quadrilateral mesh that aligns well with an arbitrary vector field given by the user.

In this paper we propose a triangular-to-quadrilateral mesh conversion scheme that can control the mesh

directionality of an output quadrilateral mesh accurately based on a user-specified vector field. Given a

triangular mesh and a vector field, the method generates a quadrilateral mesh. It first scores the geometric

irregularity and the directionality error of the quadrilaterals formed by all possible pairs of adjacent triangular

elements in the input mesh. It then converts pairs of adjacent triangular elements into quadrilateral elements

according to the weighted sum of the shape irregularity and the directionality error. The proposed conversion

method can be used with any existing triangular mesh generators.

The remainder of the paper is organized as follows. After reviewing previous mesh conversion methods in

Section 2, we describe data structures for triangular meshes and vector fields in Section 3. We then describe

the algorithm of our mesh conversion method in Section 4. After discussing our results in Section 5, we offer

some conclusions in Section 6.

2. Previous Work

Given a triangular mesh, existing triangular-to-quadrilateral mesh conversion methods [11-21] join pairs of

adjacent triangular elements selectively and then convert the pairs into quadrilateral elements. The quality of

the output quadrilateral mesh strongly depends on which pairs of triangular elements are joined. The shapes of

the quadrilateral elements and the number of triangular elements left in quad-dominant meshes strongly

depend on this selection of triangular pairs.

One of the goals of triangular-to-quadrilateral mesh conversion is to maximize the number of triangular

pairs. This problem is called maximum matching in graph theory, and there are algorithms available for

solving this problem. Suppose the connectivity of input triangular elements is interpreted as an undirected

weighted graph, the graph nodes represent triangular mesh elements, and graph edges represent connectivity

between mesh elements. Preferable quadrilateral meshes can be obtained by applying a maximum matching

algorithm to non-bipartite graphs. This process, however, is computationally expensive, and it does not

necessarily create a quad-dominant mesh suitable for engineering analysis. Another approach to solving the

mesh conversion problem is to apply integer programming [21], which is also computationally expensive. In

most cases a quadrilateral mesh of sufficient quality for engineering analysis can be generated without

performing maximum matching or integer programming, as can be seen in many previously proposed mesh

conversion methods.

In the rest of this section we survey and categorize previous mesh conversion methods. Note that the

common shortfall of these methods is limited control over mesh directionality. Some of the methods can align

an output mesh along the domain boundaries, but none can realize a user-defined arbitrary directionality.

2.1 Conversion methods that minimize the number of triangular elements

The methods in this category [11-12] count the number of unprocessed adjacent triangles for each triangle

and mark those that have only one unprocessed adjacent triangle as high-priority triangles. These triangles are

then extracted and converted into quadrilateral elements with their adjacent triangles. The adjacency of

triangles is dynamically updated during the conversion process, and many triangles are therefore marked as

high-priority triangles during the process. Finally, many of t he marked triangles are converted into

quadrilateral elements yielding a quad-dominant mesh.

Since the goal of these methods is to generate all-quadrilateral meshes, they also include post-processing

for converting isolated triangles. Heighway [11] proposes a method that swaps the edges of quadrilaterals

lying between two isolated triangles until the two triangles become adjacent, as if the two triangles 'walk'

toward each other. Johnston et al. [12] describe a method that subdivides or swaps edges of isolated triangles

until they are locally converted into all-quadrilateral elements.

2.2 Conversion methods that minimize geometric irregularities

The methods in this category [13-17] first calculate the values of a scalar function representing the shapes

of the quadrilaterals generated by all possible pairs of adjacent triangular elements. They then convert the

triangle pairs into quadrilateral elements in order of the values of this function.

Various functions can be used to evaluate quadrilateral shapes. Lo et al. [13] propose an evaluation function

defined by the ratio between the shape evaluation values of the four possible triangles generated by dividing

the quadrilateral by its two diagonals. Borouchaki et al. [17] propose an evaluation function based on the

angles of the four vertices of each quadrilateral.

2.3 Advancing front-like conversion methods

In many cases, elements along the domain boundary are the most critical in engineering analysis. Therefore,

it is often desirable that elements are well aligned along the domain boundary. Quadrilateral meshes with such

well-aligned boundary elements can be generated via triangular-to-quadrilateral mesh conversion by coupling

triangles of the input mesh along the domain boundary first.

Shimada et al. [20] devised a method that first clusters the input triangular mesh into layered sub-domains

along the domain boundary, and then couples the triangles in each cluster. The method generates a

topologically regular mesh, and the mesh elements' shapes can be improved by a smoothing process.

Owen et al. [18-19] propose the 'Q-Morph' method, which visits front edges of an input triangular mesh in

order and forms quadrilaterals along the visited front edges by re-connecting some edges around the visited

front edges. This method generates a high quality quadrilateral mesh well aligned along the domain boundary,

similar to a mesh generated by the advancing front method.

3. Preliminaries

In this section we define the data structures for the inputs of the proposed mesh conversion method: a

triangular mesh and a desired mesh directionality.

3.1 Data structure of a triangular mesh

We represent a triangular mesh, tM , as a planar graph,

),,,,(TTTVMt ∆∂= (1)

consisting of four ordered lists of:

(1) nodes,),...,(1 lvvV = ,

(2) triangular elements,),...,(1 nttT = ,

(3) element boundaries,),...,(1 nttT ∂∂=∂ , which defines the three surrounding nodes of each triangle, and

(4) adjacent elements,),...,(1 nttT ∆∆=∆ , which gives at most three adjacent triangles for each triangle.

V and T are topological entities in a triangular mesh, and T∂ and T∆ give topological connections

between topological entities. The i th element of T∂ , denoted as it∂ , represents the counter-clockwise

ordered list of the nodes surrounding the i th triangle it . Similarly, the i th element of the list T∆ , denoted as

it∆ , represents the counter-clockwise ordered list of the triangles adjacent to the i th triangle it . The notation

ijt∆ represents the j th adjacent triangle of it∆ . The number of adjacent triangles of it is denoted by || it∆ .

For example, the representation of the triangular mesh shown in Figure 1(a) is:

))),,,(),,,(),,,((
)),,,(),,,)(),,,((

),,,(),,,,,((

2132

452342321

32154321

tttt
vvvvvvvvv

tttvvvvvMt

φφφφφ

=

(2)

where φ in T∆ means that there is no triangle adjacent to a given side. In this example, as implied by the

expression),,(21 φφ tt =∆ , the triangle 1t has only one adjacent triangle 2t , so the number of adjacent

triangles is one, or 1|| 1 =∆t .

In the mesh conversion algorithms given in this paper, adjacencies between triangles are selectively deleted

in order to make pairs of triangles. Figure 1(a) shows an example of nodes and triangles in a mesh, and Figure

1(b) shows its adjacencies. To delete the adjacency between 2t and 3t in Figure 1(b), 21t∆ and 33t∆ are

set to φ , yielding a new element adjacency,

)),,(),,,(),,,((12 φφφφφφφ ttT =∆ , (3)

as shown in Figure 1(c).

Our mesh conversion method couples adjacent triangles, it and jt , while deleting the adjacency between

it (or jt) and its other adjacent triangular elements. The coupling process is repeated until no triangle has an

adjacency with more than one other triangular element. Edges shared by each pair of triangles are then deleted,

and finally a quad-dominant mesh is generated.

Although the quad-dominant mesh generated by this mesh conversion method contains a small number of

triangular elements, it can be converted into an all-quadrilateral mesh by dividing each remaining triangle into

three quadrilaterals and dividing each quadrilateral into four quadrilaterals, by adding an inside node for each

triangle and by dividing all the edges in two for both triangles and quadrilaterals, as shown in Figure 2.

(a) nodes and triangles. (b) triangle adjacency.
(c) removal of triangle

adjacency.

Figure 1. Triangular mesh representation.

Figure 2. Quad-dominant to all-quad mesh conversion.

2t

1t

3t

2v

3v
4v

5v

1v

21t∆
33t∆

23t∆

12t∆

3.2 Data structure for desired mesh directionality

One of the inputs of our method is a vector field that represents the user's preferences fo r mesh

directionality. A simple way to represent a vector field is to use a grid so that at each grid-point a vector

value is defined. In this paper we assume that the vector field is given as a two-dimensional grid, G ,

represented as:
),,(GG DPG = (4)

consisting of two ordered lists of:

(1) grid-points,)),...,(),....,,...,((,1,,11,1 nmmnGP pppp= , and

(2) vector values,)),...,(),....,,...,((,1,,11,1 nmmnGD dddd= .

As shown in Figure 3, the grid G has)1()1(−×− nm cells and nm × grid-

points. The vector value, d , at an arbitrary point, p , can be calculated by the following bi-

linear interpolation of vector values assigned to the grid-points:
()))1(())1)((1(,)1(),1(),1()1(,, ++++ +−++−−= jijijiji ttsttsts ddddd , (5)

where),(ts is the parametric coordinate of point p calculated by projecting a cell that contains point p .

Figure 3. A 2D grid representing a vector field, and the calculation of a vector value at an arbitrary
point.

4. Mesh Conversion with Directionality

This section describes the algorithm of our mesh conversion method. Given a triangular mesh, tM , and

desired mesh directionality, G , the method first scores the shapes and directionality of all the possible

quadrilaterals that can be generated by combining pairs of adjacent triangles. The method then converts the

pairs of triangles to quadrilateral elements in order of their scores.

Sections 4.1 and 4.2 describe the following two scalar functions used to score a quadrilateral,

p

1,1p

1,mp

n,1p
nm,p

1,ip

j,1p)0,0()1,0(

)0,1()1,1(

s

t
p

ji ,d

ji),1(+d

)1(),1(++ jid
)1(, +jid

d

(1) giε for evaluating the geometric irregularity of the i th quadrilateral, iq , formed by coupling two

adjacent triangles, and

(2) diε for evaluating the directionality error of the i th quadrilateral, iq .

We then describe the algorithm to pair triangles in an input mesh in Section 4.3. We also describe the

algorithm to generate a vector field from a set of input vector values in Section 4.4. In the rest of this paper

we represent all possible quadrilaterals formed by joining two adjacent triangular elements and the directions

of the edges of the quadrilaterals as the following ordered lists of:

(1) quadrilaterals,),...,(1 nqqQ = , and

(2) directions of the quadrilaterals' edges,)),,,(),...,,,,((4,3,2,1,4,13,12,11,1 nnnnE eeeeeeee= .

4.1 Scalar function gε for measuring the geometric irregularity of quadrilaterals

In order to measure the geometric irregularity of the i th quadrilateral, iq , we define the following scalar

function:

i

i
gi R

r21−=ε .
(6)

Here, as shown in Figure 4, ir is the radius of the minimum inscribed circle, the smallest circle tangent to

at least three edges of an element, and iR is the radius of the maximum circumcircle, the largest circle that

goes through at least three vertices of iq . The radius ratio of the two circles, ii Rr , takes its maximum value

21 for a square, and minimum value 0 for a highly irregular quadrilateral. Therefore, the value of giε is 0

in the best case, and 1 in the worst case.

Figure 4. Function for evaluating the geometric irregularity of a quadrilateral.

4.2 Scalar function dε for measuring the directionality error of quadrilaterals

In order to measure the directionality error of the i th quadrilateral, iq , we define the following scalar

function:

ir

iR

good bad

() 








 ×••
−⋅+= ∑

=

4

1 ,

,,

||||

|})(||,max{|

4
1

122
k ki

ikiiki
di e

dNede
ε .

(7)

 As also shown in Figure 5, id denotes the unit vector obtained from the input vector field at the center of

the quadrilateral element, and N denotes the unit normal vector of the quadrilateral element. The value

|})(||,max{| ,, ikiiki dNede ×•• takes its maximum value 1 for an edge perfectly aligned along the given

vector, and minimum value 21 when the edge and the desired direction form an angle of 45 degrees.

Therefore, the value of diε is 0 in the best case, and 1 in the worst case.

Figure 5. Function for evaluating the directionality error of a quadrilateral.

4.3 Coupling of triangle pairs to form quadrilaterals

Two previous sections defined two scalar functions, giε and diε , that measure the geometric irregularity

and directionality error, respectively. By taking a weighted sum of these two functions, we define the

following metric, iε , that decides the order of coupling triangles:

10

,)1(

≤≤

+−=

a

aa digii εεε

(8)

where a is a user-defined weighting factor representing the relative importance of the two measurements.

Lower values of a give greater importance to shape regularity than directionality. Values of iε for all

possible quadrilaterals are first calculated in our algorithm, since they do not change during the entire

coupling process. All possible quadrilaterals are then inserted into a list, L , and sorted by their iε values.

The quadrilaterals are then extracted from list L in the order of their iε values. Suppose two triangles,

at and bt , form an extracted quadrilateral, at and bt ’s other adjacencies need to be deleted. This process is

repeated until the list L becomes empty, and finally no triangle has an adjacency with more than one other

triangular element. Edges shared by each pair of triangles are then deleted to form a quad-dominant mesh.

The complete procedure for the above algorithm is given in Figure 6.

Although an output quad-dominant mesh generated by the above algorithm still contains a small number of

triangular elements, the mesh can be converted into an all-quadrilateral mesh by applying the templates

d

dN×
good

d

dN×

bad

1,ie

2,ie

4,ie

3,ie
d

dN ×
N

shown in Figure 2.

Figure 6. Pseudo code for the mesh conversion method.

4.4 Automated vector field generation

Although the mesh conversion algorithm described in the previous section requires a desired mesh

directionality as a vector field, this vector field need not be provided by the user at all, or it may be provided

at only a set of selected locations in the mesh domain. This section describes a method for generating a vector

field automatically in these situations.

Suppose that desired mesh directionality is provided by the user as vector values at a set of points in the

mesh domain. We denote these points and vector values as:

(1) points,),...,(1 lPP pp= , and

(2) Vector values,),...,(1 lPD dd= ,

where l is the number of the given points at which the desired mesh directionality is specified.

 Our implementation assigns vector values to the grid-points of grid G to represent a vector field defined

MeshConversion(tM , G) {

 /* Score all possible quadrilaterals */
for(all Tti ∈) {
 for(all ij tt ∆∈) {
 form q from it and jt ;
 if(Lq ∉) {
 calculate the value ε of q ;
 insert q into L ;
 }
 } /* end for(all ij tt ∆∈) */
} /* end for(all Tti ∈) */
sort Q in L by ε values;

/* Make pairs of triangles */
while(L is not empty) {
 extract an quadrilateral q that has
 the smallest ε value from L ;
 suppose two triangles forming q
 as it and jt ;

 if(ij tt ∆∉) continue;

 for(all ik tt ∆∈) {

 if(jk tt =) continue;
 delete adjacency between it and kt ;

 }
 for(all jk tt ∆∈) {
 if(ik tt =) continue;
 delete adjacency between jt and kt ;
 }
 } /* end while(L is not empty) */

/* Form quadrilateral elements */
 for(all Tti ∈) {
 for(one ij tt ∆∈) {
 delete the edge shared
 by it and jt ;
 }
 }

} /* end MeshConversion() */

over the entire mesh domain and well aligned along the vector values pD . We calculate a vector value, ji,d ,

that is the vector value at a grid-point, ji,g , of a two-dimensional grid using the following formula:

∑
=

=
l

k kji

k
ji

1
2

,,
, |||| e

d
d ,

(9)

where kd is the given unit vector at point kp , and kji ,,e is the vector from point kp to grid-point ji,g as

shown in Figure 7(a). Figure 7(b) shows an example of a set of input vector values, and Figure 7(c) shows a

complete vector field calculated from the set of input vector values.

(a) assignment of vector values from arbitrary points to fixed grid-points

(b) input: a set of points and vector values (c) output: generated vector field

Figure 7. Calculation of a vector field from a set of vector values.

 This vector averaging technique works best when the input vectors are evenly spaced. When a region has

many input vectors clustered together, they tend to outweigh other input vectors. This problem can be avoided

by limiting the maximum number of vectors used in a local region.

 If it is desirable that the elements be well aligned along the domain boundary, like meshes generated by

the advancing front method, our mesh conversion method can generate such meshes by automatically

generating a vector field along the domain boundary using the same method described above. To generate

such a vector field we take a set of points on the domain boundary and assign vector values at these points

according to the boundary direction.

unit vector kd
vector kji ,,e

grid-point ji ,g

poin kp

5. Results

The new mesh conversion method was implemented in C++ on Unix Workstations (IBM AIX 4.3.2 and

SGI IRIX 6.2) and on Windows NT/95/98 PCs.

In order to evaluate the quality of the meshes generated by our conversion algorithm, we define topological

irregularity, tε , in addition to the geometric irregularity, gε , and directionality error, dε , as defined in

Section 4.

We measure the overall geometric irregularity of an output quadrilateral mesh by taking the average of the

geometric irregularity of each element, giε
, as defined in Section 4.1:

∑
=

=
m

i
gig m 0

1 εε ,
(10)

where m is the number of quadrilateral elements. Since the value giε takes its minimum value 0 for a

square element, a smaller value of gε indicates a more geometrically regular mesh.

We measure the overall directionality error of an output quadrilateral mesh by taking the average of the

directionality error of each element, diε , as defined in Section 4.2:

∑
=

=
m

i
did m 0

1 εε .
(11)

Because the value diε takes its minimum value 0 for an element perfectly aligned along a given vector

field, a smaller value of dε indicates a better-aligned mesh.

For topological irregularity, we define the following metric :

|,|1
0

Dv
n i

n

i
t −= ∑

=
δε

(12)

where 4=D for the internal nodes of a quadrilateral mesh, 2=D for the boundary nodes of a quadrilateral

mesh, n denotes the number of nodes, and ivδ denotes the numb er of nodes adjacent to i th node iv . The

topological irregularity tε has a positive value that measures how much the mesh differs topologically from

a perfectly structured grid mesh. The smaller the value of tε , the more regular the mesh.

Output quadrilateral meshes differ drastically depending on the input directionality. Figure 8 shows an

example of an input triangular mesh, three different vector fields, the output quad-dominant meshes, the

smoothed output quad-dominant meshes, and the smoothed all-quadrilateral meshes. Mesh smoothing is

performed by standard Laplacian smoothing, which moves each node to the center of its surrounding nodes .

As shown in the left -hand images of Figure 8, given a directionality along the domain boundary, the method

generates a quadrilateral mesh well-aligned along the domain boundary. As shown in the center images of

Figure 8, given a uniform directionality, the method generates a quadrilateral mesh aligned in one direction.

As shown in the right-hand images of Figure 8, given variations in directionality, the method generates a

quadrilateral mesh that aligns along the various directions.

The output quadrilateral meshes also vary greatly depending on the value of the weighting coefficient contr

olling element shape regularity and directionality. Figure 9 shows an example of an input mesh, an input

vector field, and the different smoothed output quadrilateral meshes generated while varying the coefficient

value. Table 1 shows the selected coefficient values and the resulting irregularity values. Smaller a values

produce the smaller gε values, denoting a well-shaped mesh. Larger a values result in the smaller dε

values, indicating a well-aligned mesh.

The output quadrilateral meshes also diverge depending on the input meshes. Figures 10(a) and 10(b) show

an example of two input triangular meshes that have exactly the same domain boundaries and the same vector

field, but the two smoothed output all-quadrilateral meshes are distinct due to the different meshing patterns

of the input triangular meshes. Figures 10(c) and 10(d) show a similar example. Tab le 2 shows the irregularity

values of the output meshes. Note that the domain boundaries, vector fields, and coefficient value are all

identical between Figure 10(a) and Figure 10(b). Only the input triangular meshes are different. Table 2 shows

that all four irregularity values of the output mesh (1B) are much better than those of the output mesh (1A).

Similarly, the irregularity values of the output mesh (2B) are much better than those of the output mesh (2A).

The input meshes (1B) and (2B) were generated by the square packing method [23], which locates nodes

orthogonally and well-aligned along the input vector fields.

It is often desirable that elements are aligned along the domain boundary. The vector fields shown in Figure

10 were calculated automatically from the domain boundaries of the input meshes by the method described in

Section 4.4. Note that the input mesh (1A) in Figure 10 is exactly the same as the input mesh of Figure 9, but

most of the irregularity values of the output mesh (1A) in Table 2 are superior to those of the output meshes in

Table 1. This shows that the vector field calculated automatically by our method results in a high quality

quadrilateral mesh.

Figure 11 shows two more examples of input meshes, vector fields, and output meshes . Input mesh (3) is a

graded mesh, and the vector field (3) was automatically calculated from its domain boundary. Input mesh (4)

is a uniform mesh, and the vector field (4) has arbitrary directionality. The output meshes (3) and (4)

demonstrate that our method works effectively when either graded meshes or arbitrary vector fields are given.

Again, the input triangular meshes were generated by the square packing method.

6. Conclusion

We have presented a new triangular-to-quadrilateral mesh conversion method that can control the

directionality of the output meshes. Our central idea was to use a vector field to represent a user-specified

mesh directionality and then to generate quadrilateral elements well-aligned along the vector field. The

method first scores, according to their shapes and directionality, all possible quadrilaterals formed by the

pairing of adjacent triangles. It then converts the pairs into quadrilateral elements in the order of their scores.

The input mesh directionality can either be: (1) manually specified by the user; (2) automatically generated

from the domain boundary; (3) automatically generated from a partial directionality input, or (4)

automatically generated from previous analytic results . The method can generate quadrilateral meshes aligned

with the input mesh directionality, which is one of the unique features of the proposed mesh conversion

method.

Another feature of our approach is the flexible adjustment of the weight between element shape and mesh

directionality. Because the importance of these factors depends on the application of the output meshes, it is

useful that the method adjusts their respective priorities by changing the coefficient value in the error

calculation functions.

References

1. Ho-Le K., Finite Element Mesh Generation Method: a Review and Classification, Computer Aided

Design 1988; 20(1): 27-38.

2. Tam T.K.H., and Armstrong C.G., 2D Finite Element Mesh Generation by Medial Axis Subdivision,

Advances in Engineering Software 1991; 13: 313-324.

3. Yerry M.A., and Shephard M.S., A Modified-Quadtree Approach to Finite Element Mesh Generation,

IEEE Computer Graphics and Applications 1983; 3: 39-46.

4. Baehmann P. L., Wittchen S.L., Shephard M.S., Grice K.R., and Yerry M.A., Robust Geometrically-

Based, Automatic Two -Dimensional Mesh Generation, International Journal of Numerical Methods in

Engineering 1987; 24: 1043-1078.

5. Shephard M.S., and Georges M.K., Automatic Three-Dimensional Mesh Generation by the Finite Octree

Technique, International Journal of Numerical Methods in Engineering 1991; 32: 709-749.

6. Blacker T.D., and Stephenson M.B., Paving: A New Approach to Automated Quadrilateral Mesh

Generation, International Journal for Numerical Methods in Engineering 1991; 32: 811-847.

7. Zhu J.Z., Zienkiewicz O.C., Hinton E., and Wu J., A New Approach to the Development of Automatic

Quadrilateral Mesh Generation, International Journal for Numerical Methods in Engineering 1991; 32: 849-

866.

8. Cass R.J., Benzley S.E., Meyers R.J., and Blacker T. D., Generating 3-D Paving: An Automated

Quadrilateral Surface Mesh Generation Algorithm, International Journal of Numerical Methods in

Engineering 1996; 39: 1475-1489.

9. White D.R., and Kinney P., Redesign of the Paving Algorithm: Robustness Enhancements through

Element by Element Meshing, Proceedings of 6th International Meshing Roundtable 1997; 323-335.

10. Rees M., Combining Quadrilateral and Triangular Meshing Using the Advancing Front Approach,

Proceedings of 6th International Meshing Roundtable 1997; 337-348.

11. Heighway E.A., A Mesh Generator for Automatically Subdividing Irregular Polygons into

Quadrilaterals, IEEE Transactions on Magnetices 1983; Mag-19: 2535-2538.

12. Johnston B.P., Sullivan J.M., and Kwasnik A., Automatic Conversion of Triangular Finite Element

Meshes to Quadrilateral Elements, International Journal for Numerical Methods in Engineering 1991; 31:

67-84.

13. Lo S.H., Generating Quadrilateral Elements on Plane and over Curved Surfaces, Computer and

Structures 1989; 31(3): 421-426.

14. Tembulkar J.M., and Hanks B.W., On Generating Quadrilateral Elements from a Triangular Mesh,

Computers and Structures 1992; 42(4): 665-667.

15. Lee C.K., and Lo S.H., A New Scheme for the Generation of a Graded Quadrilateral Mesh, Computers

and Structures 1994; 52: 847-857.

16. Borouchaki H., Frey P.J., and George P. L., Unstructured Triangle-Quadrilateral Mesh Generation,

Application to Surface Meshing, Proceedings of 5th International Meshing Roundtable 1996; 229-242.

17. Borouchaki H., and Frey P.J., Adaptive Triangular-Quadrilateral Mesh Generation, International

Journal for Numerical Methods in Engineering 1998; 41(5): 915-934.

18. Owen S.J., Staten M.L., Canann S.A., and Saigal S., Advancing Front Quadrilateral Meshing Using

Triangle Transformation, Proceedings of 7th International Meshing Roundtable 1998; 409-428.

19. Owen S.J., Staten M.L., Canann S.A., and Saigal S., Q-morph: An Indirect Approach to Advancing

Front Quad Meshing, International Journal for Numerical Methods in Engineering 1999; 44: 1317-1340.

20. Shimada K., and Itoh T., Automated Conversion of 2D Triangular Mesh into Quadrilateral Mesh,

Proceedings of International Conference on Computational Engineering Science 1995; 350-355.

21. Tajima A., Optimizing Geometric Triangulations by Using Integer Programming, Ph.D. thesis,

University of Tokyo, 2000.

22. Shimada K., Physically-based Mesh Generation: Automated Triangulation of Surfaces and Volumes via

Bubble Packing, Ph.D. thesis , Massachusetts Institute of Technology 1993.

23. Shimada K., Liao J., and Itoh T., Quadrilateral Meshing with Directionality Control through the

Packing of Square Cells, Proceedings of 7th International Meshing Roundtable 1998; 61-75.

24. Shimada K. and D. Gossard, Automatic Triangular Mesh Generation of

Trimmed Parametric Surfaces for Finite Element Analysis, Computer Aided Geometric Design 1998; Vol.

15, No. 3, 199-222.

(a) input triangular mesh.

(b) three different input vector fields.

(c) output quad-dominant meshes.

(d) smoothed output quad-dominant meshes.

(e) smoothed output all-quadrilateral meshes.

Figure 8. Output quadrilateral meshes are well-aligned along the input mesh directionality.

(a) input triangular mesh. (b) input vector field.

(c) output mesh (1) (0.0=a). (d) output mesh (2) (3.0=a).

(e) output mesh (3) (6.0=a). (f) output mesh (4) (0.1=a).

Figure 9. Output quadrilateral meshes vary according to the coefficient value.

Table 1. Coefficient values and irregularity values of meshes in Figure 9.
 Coefficient value

gε dε tε

Mesh (1) 0.0=a 0.04932 0.34012 0.28322
Mesh (2) 3.0=a 0.05285 0.27340 0.26224
Mesh (3) 6.0=a 0.07028 0.22332 0.26923
Mesh (4) 0.1=a 0.07682 0.20796 0.28322

(a) input mesh (1A), vector field (1), and output mesh (1A).

(b) input mesh (1B), vector field (1), and output mesh (1B).

(c) input mesh (2A), vector field (2), and output mesh (2A).

(d) input mesh (2B), vector field (2), and output mesh (2B).

Figure 10. Output quadrilateral meshes are improved by using the square packing method,
in generating input triangular meshes with mesh directionality.

Table 2. Coefficient values and irregularity values of meshes in Figure 10.
 coefficient

value
gε dε tε

Mesh (1A) 5.0=a 0.07504 0.15359 0.22727
Mesh (1B) 5.0=a 0.02943 0.03439 0.10305
Mesh (2A) 5.0=a 0.13992 0.19212 0.21311
Mesh (2B) 5.0=a 0.03842 0.04097 0.13084

(a) input graded mesh (1), vector field (1), and output mesh (1).

(b)input mesh (2), arbitrary vector field (2), and output mesh (2).

Figure 11. The mesh conversion method works well even when graded meshes or
arbitrary directionalities are given.

