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Abstract 
 

This paper presents a triangular-to-quadrilateral mesh conversion method that can control the directionality of 

the output quadrilateral mesh according to a user-specified vector field. Given a triangular mesh and a vector 

field, the method first scores all possible quadrilaterals that can be formed by pairs of adjacent triangles, 

according to their shape and directionality. It then converts the pairs into quadrilateral elements in order of the 

scores to form a quadrilateral mesh. Engineering analyses with finite element methods occasionally require a 

quadrilateral mesh well aligned along the boundary geometry or the directionality of some physical 

phenomena, such as in the directions of a streamline, shock boundary, or force propagation vectors. The 

mesh conversion method can control the mesh directionality according to any desired vector fields, and the 

method can be used with any existing triangular mesh generators. 

 

Key Words: quadrilateral mesh, triangular mesh, conversion, directionality. 

 

1. Introduction 
 

In some types of finite element method (FEM) analyses, such as sheet-metal forming simulations and 

automobile crash simulations, quadrilateral meshes are preferable to triangular meshes because they produce 

more accurate results more efficiently. Such engineering analyses occasionally require a quadrilateral mesh 

well aligned along the boundary geometry or the directionality of some physical phenomena, such as along 

the directions of a streamline, shock boundary, or force propagation vectors . 

Although there are many approaches to generating quadrilateral meshes, their capabilit ies of controlling the 

mesh directionality are  quite limited. The existing quadrilateral meshing approaches include: template 



 
 

matching [1], medial-axis -based decomposition [2], quad-tree decomposition [3-5], advancing front [6-10], 

and triangular-to-quadrilateral mesh conversion [11-21]. In this paper we focus on the triangle-to-quadrilateral 

mesh conversion methods, which take advantage of the benefits of triangular mesh generation: (1) a  fully-

automated meshing process, (2) flexible control of element sizes, and (3) less computation time than the 

advancing front method. The advancing front methods [6-10] and the triangular-to-quadrilateral mesh 

conversion methods [18 -20] control mesh directionality, but based only on the domain boundary; they cannot 

create a quadrilateral mesh that aligns well with an arbitrary vector field given by the user. 

In this paper we propose a triangular-to-quadrilateral mesh conversion scheme that can control the mesh 

directionality of an output quadrilateral mesh accurately based on a user-specified vector field. Given a 

triangular mesh and a vector field, the method generates a quadrilateral mesh. It first scores the geometric 

irregularity and the directionality error of the quadrilaterals formed by all possible pairs of adjacent triangular 

elements in the input mesh. It then converts pairs of adjacent triangular elements into quadrilateral elements 

according to the weighted sum of the shape irregularity and the directionality error. The proposed conversion 

method can be used with any existing triangular mesh generators. 

The remainder of the paper is organized as follows. After reviewing previous mesh conversion methods in 

Section 2, we describe data structures for triangular meshes and vector fields in Section 3. We then describe 

the algorithm of our mesh conversion method in Section 4. After discussing our results in Section 5, we offer 

some conclusions in Section 6. 

 

2. Previous Work 
 

Given a triangular mesh, existing triangular-to-quadrilateral mesh conversion methods [11-21] join pairs of 

adjacent triangular elements selectively and then convert the pairs into quadrilateral elements. The quality of 

the output quadrilateral mesh strongly depends on which pairs of triangular elements are joined. The shapes of 

the quadrilateral elements and the number of triangular elements left in quad-dominant meshes strongly 

depend on this selection of triangular pairs.  

One of the goals  of triangular-to-quadrilateral mesh conversion is to maximize the number of triangular 

pairs. This problem is called maximum matching in graph theory, and there are algorithms available for 

solving this problem. Suppose the connectivity of input triangular elements is interpreted as an undirected 

weighted graph, the graph nodes represent triangular mesh elements, and graph edges represent connectivity 

between mesh elements. Preferable quadrilateral meshes can be obtained by applying a maximum matching 

algorithm to non-bipartite graphs. This process, however, is computationally expensive, and it does not 

necessarily create a quad-dominant mesh suitable for engineering analysis. Another approach to solving the 



 
 

mesh conversion problem is to apply integer programming [21], which is  also computationally expensive. In 

most cases a quadrilateral mesh of sufficient quality for engineering analysis can be generated without 

performing maximum matching or integer programming, as can be seen in many previously proposed mesh 

conversion methods. 

In the rest of this section we survey and categorize previous mesh conversion methods. Note that the 

common shortfall of these methods is limited control over mesh directionality. Some of the methods can align 

an output mesh along the domain boundaries, but none can realize a user-defined arbitrary directionality. 

 

2.1 Conversion methods that minimize the number of triangular elements 

 

The methods in this category [11-12] count the number of unprocessed adjacent triangles for each triangle 

and mark those that have only one unprocessed adjacent triangle as high-priority triangles. These triangles are 

then extracted and converted into quadrilateral elements with their adjacent triangles. The adjacency of 

triangles is dynamically updated during the conversion process, and many triangles are therefore marked as 

high-priority triangles during the process. Finally,  many of t he  marked triangles are converted into 

quadrilateral elements yielding a quad-dominant mesh.  

Since the goal of these methods is to generate all-quadrilateral meshes, they also include post-processing 

for converting isolated triangles. Heighway [11] proposes a method that swaps the edges of quadrilaterals 

lying between two isolated triangles until the two triangles become adjacent, as if the two triangles 'walk' 

toward each other. Johnston et al. [12] describe a method that subdivides or swaps edges of isolated triangles 

until they are locally converted into all-quadrilateral elements. 

 

2.2 Conversion methods  that minimize geometric irregularities  

 

The methods in this category [13-17] first calculate the values of a scalar function representing the shapes 

of the quadrilaterals generated by all possible pairs of adjacent triangular elements. They then convert the 

triangle pairs into quadrilateral elements in order of the values of this function.  

Various functions can be used to evaluate quadrilateral shapes. Lo et al. [13] propose an evaluation function 

defined by the ratio between the shape evaluation values of the four possible triangles generated by dividing 

the quadrilateral by its two diagonals. Borouchaki et al. [17] propose an evaluation function based on the 

angles of the four vertices of each quadrilateral. 

 



 
 

2.3 Advancing front-like conversion methods 

 

In many cases, elements along the domain boundary are the most critical in engineering analysis. Therefore, 

it is often desirable that elements are well aligned along the domain boundary. Quadrilateral meshes with such 

well-aligned boundary elements can be generated via triangular-to-quadrilateral mesh conversion by coupling 

triangles of the input mesh along the domain boundary first.  

Shimada et al. [20] devised a method that first clusters the input triangular mesh into layered sub-domains 

along the domain boundary, and then couples the triangles in each cluster. The method generates a 

topologically regular mesh, and the mesh elements' shapes can be improved by a smoothing process. 

Owen et al. [18-19] propose the 'Q-Morph' method, which visits front edges of an input triangular mesh in 

order and forms quadrilaterals along the visited front edges by re-connecting some edges around the visited 

front edges. This method generates a high quality quadrilateral mesh well aligned along the domain boundary, 

similar to a mesh generated by the advancing front method.  

 

3. Preliminaries 
 

In this section we define the data structures for the inputs of the proposed mesh conversion method: a 

triangular mesh and a desired mesh directionality. 

 

3.1 Data structure of a triangular mesh 

 

We represent a triangular mesh, tM , as a planar graph,  

),,,,( TTTVMt ∆∂=  (1) 

consisting of four ordered lists  of:  

(1) nodes, ),...,( 1 lvvV = , 

(2) triangular elements, ),...,( 1 nttT = , 

(3) element boundaries, ),...,( 1 nttT ∂∂=∂ , which defines the three surrounding nodes of each triangle, and 

(4) adjacent elements, ),...,( 1 nttT ∆∆=∆ , which gives at most three adjacent triangles for each triangle. 

V  and T  are topological entities in a triangular mesh, and T∂  and T∆  give topological connections 

between topological entities. The i th element of T∂ , denoted as it∂ , represents the counter-clockwise 

ordered list of the nodes surrounding the i th triangle it . Similarly, the i th element of the list T∆ , denoted as 

it∆ , represents the counter-clockwise ordered list of the triangles adjacent to the i th triangle it . The notation 

ijt∆  represents the j th adjacent triangle of it∆ . The number of adjacent triangles of it  is denoted by || it∆ . 

For example, the representation of the triangular mesh shown in Figure 1(a) is: 
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where φ  in T∆  means that there is no triangle adjacent to a given side. In this example, as implied by the 

expression ),,( 21 φφ tt =∆ , the triangle 1t  has only one adjacent triangle 2t , so the number of adjacent 

triangles is one, or 1|| 1 =∆t . 

In the mesh conversion algorithms given in this paper, adjacencies between triangles are selectively deleted 

in order to make pairs of triangles. Figure 1(a) shows an example of nodes and triangles in a mesh, and Figure 

1(b) shows its adjacencies. To delete the adjacency between 2t  and 3t  in Figure 1(b), 21t∆  and 33t∆  are 

set to φ , yielding a new element adjacency, 

)),,(),,,(),,,(( 12 φφφφφφφ ttT =∆ , (3) 

as shown in Figure 1(c). 

Our mesh conversion method couples adjacent triangles, it  and jt , while deleting the adjacency between 

it  (or jt ) and its other adjacent triangular elements. The coupling process is repeated until no triangle has an 

adjacency with more than one other triangular element. Edges shared by each pair of triangles are then deleted, 

and finally a quad-dominant mesh is generated. 

Although the quad-dominant mesh generated by this mesh conversion method contains a small number of 

triangular elements, it can be converted into an all-quadrilateral mesh by dividing each remaining triangle into 

three quadrilaterals  and dividing each quadrilateral into four quadrilaterals, by adding an inside node for each 

triangle and by dividing all the edges in two for both triangles and quadrilaterals, as shown in Figure 2. 

 

 
 

  

(a) nodes and triangles. (b) triangle adjacency. 
(c) removal of triangle 

adjacency. 

Figure 1. Triangular mesh representation. 

 
 

Figure 2. Quad-dominant to all-quad mesh conversion. 
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3.2 Data structure for desired mesh directionality 

 

One of the inputs of our method is a vector field that represents the user's preferences  fo r mesh 

directionality. A simple way to represent a vector field is to use a grid so that at each grid-point a vector 

value is defined. In this paper we assume that the vector field is given as a two-dimensional grid, G , 

represented as: 
),,( GG DPG =  (4) 

consisting of two ordered lists  of: 

(1) grid-points, )),...,(),....,,...,(( ,1,,11,1 nmmnGP pppp= , and 

(2) vector values, )),...,(),....,,...,(( ,1,,11,1 nmmnGD dddd= . 

As shown in Figure 3, the grid G  has )1()1( −×− nm  cells and nm ×  grid-

points. The vector value, d , at an arbitrary point, p , can be calculated by the following bi-

linear interpolation of vector values assigned to the grid-points: 
( ) ))1(())1)((1(, )1(),1(),1()1(,, ++++ +−++−−= jijijiji ttsttsts ddddd , (5) 

where ),( ts  is the parametric coordinate of point p  calculated by projecting a cell that contains point p . 

 
 

Figure 3. A 2D grid representing a vector field, and the calculation of a vector value at an arbitrary 
point. 

 

4. Mesh Conversion with Directionality 
 

This section describes the algorithm of our mesh conversion method. Given a triangular mesh, tM , and 

desired mesh directionality, G , the method first scores the shapes and directionality of all the possible 

quadrilaterals that can be generated by combining pairs of adjacent triangles. The method then converts the 

pairs of triangles to quadrilateral elements in order of their scores.  

Sections 4.1 and 4.2 describe the following two scalar functions used to score a quadrilateral, 
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(1) giε  for evaluating the geometric irregularity  of the i th quadrilateral, iq , formed by coupling two 

adjacent triangles, and 

(2) diε  for evaluating the directionality error of the i th quadrilateral, iq . 

We then describe the algorithm to pair triangles in an input mesh in Section 4.3. We also describe the 

algorithm to generate a vector field from a set of input vector values in Section 4.4. In the rest of this paper 

we represent all possible quadrilaterals formed by joining two adjacent triangular elements and the directions 

of the edges of the quadrilaterals as the following ordered lists  of: 

(1) quadrilaterals, ),...,( 1 nqqQ = , and 

(2) directions of the quadrilaterals' edges, )),,,(),...,,,,(( 4,3,2,1,4,13,12,11,1 nnnnE eeeeeeee= . 

 

4.1 Scalar function gε  for measuring the geometric irregularity of quadrilaterals 

 

In order to measure the geometric irregularity of the i th quadrilateral, iq , we define the following scalar 

function: 

i

i
gi R

r21−=ε . 
(6) 

Here, as shown in Figure 4, ir  is the radius of the minimum inscribed circle, the smallest circle tangent to 

at least three edges of an element, and iR  is the radius of the maximum circumcircle, the largest circle that 

goes through at least three vertices of iq . The radius ratio of the two circles, ii Rr , takes its maximum value 

21  for a square, and minimum value 0 for a highly irregular quadrilateral. Therefore, the value of giε  is 0 

in the best case, and 1 in the worst case. 

 
 

Figure 4. Function for evaluating the geometric irregularity of a quadrilateral. 

 

4.2 Scalar function dε  for measuring the directionality error of quadrilaterals  

 

In order to measure the directionality error of the i th quadrilateral, iq , we define the following scalar 

function: 
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 As also shown in Figure 5, id  denotes the unit vector obtained from the input vector field at the center of 

the quadrilateral element, and N  denotes the unit normal vector of the quadrilateral element. The value 

|})(||,max{| ,, ikiiki dNede ×••  takes its maximum value 1 for an edge perfectly aligned along the given 

vector, and minimum value 21  when the edge and the desired direction form an angle of 45 degrees. 

Therefore, the value of diε  is 0 in the best case, and 1 in the worst case. 

 
 

Figure 5. Function for evaluating the directionality error of a quadrilateral. 

 

4.3 Coupling of triangle pairs to form quadrilaterals  

 

Two previous sections defined two scalar functions, giε  and diε , that measure the geometric irregularity 

and directionality error, respectively. By taking a weighted sum of these two functions, we define the 

following metric, iε , that decides the order of coupling triangles: 
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where a  is a user-defined weighting factor representing the relative importance of the two measurements. 

Lower values of a  give greater importance to shape regularity than directionality. Values of iε  for all 

possible quadrilaterals are first calculated in our algorithm, since they do not change during the entire 

coupling process. All possible quadrilaterals are then inserted into a list, L , and sorted by their iε  values.  

The quadrilaterals are then extracted from list L  in the order of their iε  values. Suppose two triangles, 

at  and bt , form an extracted quadrilateral, at  and bt ’s other adjacencies need to be deleted. This process is 

repeated until the list L  becomes empty, and finally no triangle has an adjacency with more than one other 

triangular element. Edges shared by each pair of triangles are then deleted to form a quad-dominant mesh. 

The complete procedure for the above algorithm is given in Figure 6. 

Although an output quad-dominant mesh generated by the above algorithm still contains a small number of 

triangular elements, the mesh can be converted into an all-quadrilateral mesh by applying the templates 

d

dN×
good 

d

dN×

bad 

1,ie

2,ie

4,ie

3,ie
d

dN ×
N



 
 

shown in Figure 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Pseudo code for the mesh conversion method. 

 

4.4 Automated vector field generation 

 

Although the mesh conversion algorithm described in the previous section requires a desired mesh 

directionality as a vector field, this vector field need not be provided by the user at all, or it may be provided 

at only a set of selected locations in the mesh domain. This section describes a method for generating a vector 

field automatically in these situations.  

Suppose that desired mesh directionality is provided by the user as vector values at a set of points in the 

mesh domain. We denote these points and vector values as: 

(1) points, ),...,( 1 lPP pp= , and 

(2) Vector values, ),...,( 1 lPD dd= , 

where l  is the number of the given points at which the desired mesh directionality is specified. 

 Our implementation assigns vector values to the grid-points of grid G  to represent a vector field defined 

MeshConversion( tM , G  ) { 

 
  /* Score all possible quadrilaterals */ 
for( all Tti ∈  ) { 
    for( all ij tt ∆∈ ) { 
      form q from it and jt ; 
      if( Lq ∉ ) { 
        calculate the value ε  of q ; 
        insert q  into L ; 
    } 
 } /* end for( all ij tt ∆∈ ) */ 
} /* end for( all Tti ∈  ) */ 
sort Q  in L  by ε  values; 
 
/* Make pairs of triangles */ 
while( L  is not empty ) { 
   extract an quadrilateral q that has 
      the smallest ε value from L ;  
  suppose two triangles forming q  
      as it  and jt ; 

   if( ij tt ∆∉ ) continue; 

  for( all ik tt ∆∈ ) { 

     if( jk tt = ) continue;    
     delete adjacency between it  and kt ; 

  } 
  for( all jk tt ∆∈ ) { 
    if( ik tt = ) continue; 
    delete adjacency between jt  and kt ; 
   } 
 } /* end while( L  is not empty ) */ 
 
/* Form quadrilateral elements */ 
 for( all Tti ∈  ) { 
   for( one ij tt ∆∈ ) { 
      delete the edge  shared 
         by it and jt ; 
     } 
  } 
 
} /* end MeshConversion() */ 



 
 

over the entire mesh domain and well aligned along the vector values pD . We calculate a vector value, ji,d , 

that is the vector value at a grid-point, ji,g , of a two-dimensional grid using the following formula: 

∑
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k
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1
2
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, |||| e

d
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(9) 

where kd  is the given unit vector at point kp , and kji ,,e  is the vector from point kp  to grid-point ji,g  as 

shown in Figure 7(a). Figure 7(b) shows an example of a set of input vector values, and Figure 7(c) shows a 

complete vector field calculated from the set of input vector values. 

 
 

(a) assignment of vector values from arbitrary points to fixed grid-points 

  
(b) input: a set of points and vector values (c) output: generated vector field 

Figure 7. Calculation of a vector field from a set of vector values. 

 

 This vector averaging technique works best when the input vectors are evenly spaced. When a region has 

many input vectors clustered together, they tend to outweigh other input vectors. This problem can be avoided 

by limiting the maximum number of vectors used in a local region. 

 If it is desirable that the elements be well aligned along the domain boundary, like meshes generated by 

the advancing front method, our mesh conversion method can generate such meshes by automatically 

generating a vector field along the domain boundary using the same method described above. To generate 

such a vector field we take a set of points on the domain boundary and assign vector values at these points 

according to the boundary direction. 

unit vector kd  
vector kji ,,e  

grid-point ji ,g  

poin kp



 
 

 

5. Results 
 

The new mesh conversion method was implemented in C++ on Unix Workstations (IBM AIX 4.3.2 and 

SGI IRIX 6.2) and on Windows NT/95/98 PCs. 

In order to evaluate the quality of the meshes generated by our conversion algorithm, we define topological 

irregularity, tε , in addition to the geometric irregularity, gε , and directionality error, dε , as defined in 

Section 4. 

We measure the overall geometric irregularity of an output quadrilateral mesh by taking the average of the 

geometric irregularity of each element, giε
, as defined in Section 4.1: 

∑
=

=
m

i
gig m 0

1 εε , 
(10) 

where m  is the number of quadrilateral elements. Since the value giε  takes its minimum value 0 for a 

square element, a smaller value of gε  indicates a more geometrically regular mesh. 

We measure the overall directionality error of an output quadrilateral mesh by taking the average of the 

directionality error of each element, diε , as defined in Section 4.2: 

∑
=

=
m

i
did m 0

1 εε . 
(11) 

Because the value diε  takes its minimum value 0 for an element perfectly aligned along a given vector 

field, a smaller value of dε  indicates a better-aligned mesh. 

For topological irregularity, we define the following metric : 

|,|1
0

Dv
n i

n

i
t −= ∑

=
δε  

(12) 

where 4=D  for the internal nodes of a quadrilateral mesh, 2=D  for the boundary nodes of a quadrilateral 

mesh, n  denotes the number of nodes, and ivδ  denotes the numb er of nodes adjacent to i th node iv . The 

topological irregularity tε  has a positive value that measures how much the mesh differs topologically from 

a perfectly structured grid mesh. The smaller the value of tε , the more regular the mesh. 

Output quadrilateral meshes differ drastically depending on the input directionality. Figure 8 shows an 

example of an input triangular mesh, three different vector fields, the output quad-dominant meshes, the 

smoothed output quad-dominant meshes, and the smoothed all-quadrilateral meshes. Mesh smoothing is 

performed by standard Laplacian smoothing, which moves each node to the center of its surrounding nodes . 

As shown in the left -hand images of Figure 8, given a directionality along the domain boundary, the method 

generates a quadrilateral mesh well-aligned along the domain boundary. As shown in the center images of 

Figure 8, given a uniform directionality, the method generates a quadrilateral mesh aligned in one direction. 

As shown in the right-hand images of Figure 8, given variations in directionality, the method generates a 



 
 

quadrilateral mesh that aligns along the various directions. 

The output quadrilateral meshes also vary greatly depending on the value of the weighting coefficient contr

olling element shape regularity and directionality. Figure 9 shows an example of an input mesh, an input 

vector field, and the different smoothed output quadrilateral meshes generated while varying the coefficient 

value. Table 1 shows the selected coefficient values and the resulting irregularity values. Smaller a  values 

produce the smaller gε  values, denoting a well-shaped mesh. Larger a  values result in the smaller dε  

values, indicating a well-aligned mesh. 

The output quadrilateral meshes also diverge depending on the input meshes. Figures 10(a) and 10(b) show 

an example of two input triangular meshes that have exactly the same domain boundaries and the same vector 

field, but the two smoothed output all-quadrilateral meshes are distinct due to the different meshing patterns 

of the input triangular meshes. Figures 10(c) and 10(d) show a similar example. Tab le 2 shows the irregularity 

values of the output meshes. Note that the domain boundaries, vector fields, and coefficient value are all 

identical between Figure 10(a) and Figure 10(b). Only the input triangular meshes are different. Table 2 shows 

that all four irregularity values of the output mesh (1B) are much better than those of the output mesh (1A). 

Similarly, the irregularity values of the output mesh (2B) are much better than those of the output mesh (2A). 

The input meshes (1B) and (2B) were generated by the square packing method [23], which locates nodes 

orthogonally and well-aligned along the input vector fields.  

It is often desirable that elements are aligned along the domain boundary. The vector fields shown in Figure 

10 were calculated automatically from the domain boundaries of the input meshes by the method described in 

Section 4.4. Note that the input mesh (1A) in Figure 10 is exactly the same as the input mesh of Figure 9, but 

most of the irregularity values of the output mesh (1A) in Table 2 are superior to those of the output meshes in 

Table 1. This shows that the vector field calculated automatically by our method results in a high quality 

quadrilateral mesh. 

Figure 11 shows two more examples of input meshes, vector fields, and output meshes . Input mesh (3) is a 

graded mesh, and the vector field (3) was  automatically calculated from its domain boundary. Input mesh (4) 

is a uniform mesh, and the vector field (4) has  arbitrary directionality. The output meshes (3) and (4) 

demonstrate that our method works effectively when either graded meshes or arbitrary vector fields are given. 

Again, the input triangular meshes were generated by the square packing method. 

 

6. Conclusion 
 

We have presented a new triangular-to-quadrilateral mesh conversion method that can control the 

directionality of the output meshes. Our central idea was to use a vector field to represent a user-specified 



 
 

mesh directionality and then to generate quadrilateral elements well-aligned along the vector field. The 

method first scores, according to their shapes and directionality, all possible quadrilaterals formed by the 

pairing of adjacent triangles. It then converts the pairs into quadrilateral elements in the order of their scores.  

The input mesh directionality can either be: (1) manually specified by the user; (2) automatically generated 

from the domain boundary; (3) automatically generated from a partial directionality input, or (4) 

automatically generated from previous analytic results . The method can generate quadrilateral meshes aligned 

with the input mesh directionality, which is one of the unique features of the proposed mesh conversion 

method. 

Another feature of our approach is the flexible adjustment of the weight between element shape and mesh 

directionality. Because the importance of these factors depends on the application of the output meshes, it is 

useful that the method adjusts their respective priorities by changing the coefficient value in the error 

calculation functions. 
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(a) input triangular mesh. 

   
(b) three different input vector fields. 

   
(c) output quad-dominant meshes. 

   
(d) smoothed output quad-dominant meshes. 

   
(e) smoothed output all-quadrilateral meshes. 

Figure 8. Output quadrilateral meshes are well-aligned along the input mesh directionality. 



 
 

  
(a) input triangular mesh. (b) input vector field. 

  
(c) output mesh (1) ( 0.0=a ). (d) output mesh (2) ( 3.0=a ). 

  
(e) output mesh (3) ( 6.0=a ). (f)  output mesh (4) ( 0.1=a ). 

Figure 9. Output quadrilateral meshes vary according to the coefficient value. 

 

Table 1. Coefficient values and irregularity values of meshes in Figure 9. 
 Coefficient value 

gε  dε  tε  

Mesh (1) 0.0=a  0.04932 0.34012 0.28322 
Mesh (2) 3.0=a  0.05285 0.27340 0.26224 
Mesh (3) 6.0=a  0.07028 0.22332 0.26923 
Mesh (4) 0.1=a  0.07682 0.20796 0.28322 

 



 
 

 

(a) input mesh (1A), vector field (1), and output mesh (1A). 

(b) input mesh (1B), vector field (1), and output mesh (1B). 

   
(c) input mesh (2A), vector field (2), and output mesh (2A). 

   
(d) input mesh (2B), vector field (2), and output mesh (2B). 

Figure 10. Output quadrilateral meshes are improved by using the square packing method, 
in generating input triangular meshes with mesh directionality. 



 
 

Table 2. Coefficient values and irregularity values of meshes in Figure 10. 
 coefficient 

value 
gε  dε  tε  

Mesh (1A) 5.0=a  0.07504 0.15359 0.22727 
Mesh (1B) 5.0=a  0.02943 0.03439 0.10305 
Mesh (2A) 5.0=a  0.13992 0.19212 0.21311 
Mesh (2B) 5.0=a  0.03842 0.04097 0.13084 

 

 

 

(a) input graded mesh (1), vector field (1), and output mesh (1). 

(b)input mesh (2), arbitrary vector field (2), and output mesh (2). 

Figure 11. The mesh conversion method works well even when graded meshes or 
arbitrary directionalities are given. 

 


