
Hierarchical Data Visualization Using
a Fast Rectangle-Packing Algorithm

Takayuki Itoh, Member, IEEE Computer Society, Yumi Yamaguchi,

Yuko Ikehata, and Yasumasa Kajinaga

Abstract—This paper presents a technique for the representation of large-scale hierarchical data which aims to provide good

overviews of complete structures and the content of the data in one display space. The technique represents the data by using nested

rectangles. It first packs icons or thumbnails of the lowest-level data and then generates rectangular borders that enclose the packed

data. It repeats the process of generating rectangles that enclose the lower-level rectangles until the highest-level rectangles are

packed. This paper presents two rectangle-packing algorithms for placing items of hierarchical data onto display spaces. The

algorithms refer to Delaunay triangular meshes connecting the centers of rectangles to find gaps where rectangles can be placed. The

first algorithm places rectangles where they do not overlap each other and where the extension of the layout area is minimal. The

second algorithm places rectangles by referring to templates describing the ideal positions for nodes of input data. It places rectangles

where they do not overlap each other and where the combination of the layout area and the distances between the positions described

in the template and the actual positions is minimal. It can smoothly represent time-varying data by referring to templates that describe

previous layout results. It is also suitable for semantics-based or design-based data layout by generating templates according to the

semantics or design.

Index Terms—Hierarchical data, Delaunay triangular mesh, rectangle packing.

�

1 INTRODUCTION

THERE are various kinds of hierarchical data around us
and it is therefore important to provide visualization

systems for such data. Some of them first represent higher-
level portions of the hierarchical data and provide user
interfaces to interactively explore lower-level portions.
Others represent the overview of the data by placing all
portions into display spaces.

Tree-based representation methods [5], [12], [13] provide
good interfaces for exploring hierarchical data. These
methods often first place a specific node (i.e., the node at
the top of the hierarchy or a user-specified node) at the
center of a display space and then place child nodes around
the focal node. They do not always display all parts of the
hierarchical data, but provide an interface to select and
focus on the parts users are interested in. These interfaces
are especially useful for navigation by end users.

On the other hand, some other visualization methods
provide good views of entire hierarchical data sets.
Treemap [1], [2], [4], [11], [18] is a well-known space-filling
visualization technique that places all parts of the data onto
one display space. The technique proposed in this paper is
closer to the space-filling techniques rather than the tree-
based techniques.

This paper presents a technique that represents hier-
archical data in compact display spaces. The technique
represents hierarchical data as a set of nested rectangles, in

contrast to many existing tree-based data visualization
techniques. Fig. 1 is an example of a representation using
our technique. It first packs rectangular icons or thumbnails
that denote leaf nodes under a nonleaf node without
overlapping each other and encloses them by a rectangular
border that denotes the nonleaf node. It then repeats the
process, enclosing the sets of nodes by rectangles, from the
lowest level to the highest level. It finally places all of the
pieces of hierarchical data onto a display area.

We were motivated to develop the presented technique
by the requirements for the visualization of Web sites. The
main requirement was monitoring the attributes of thou-
sands of Web pages, where the attributes include access
frequency and last update time. We therefore aimed to pack
thousands of icons representing Web pages into one display
space. We avoided the overlap of icons so that all icons can
be visualized without viewing operations. We represented
all Web pages as equisized icons so that they can be evenly
compared. We categorized the icons inside squarish
subspaces according to the directory structure of the Web
site so that Web pages under the same directory can be
visually recognized as a group of icons. Fig. 1 shows how
the presented technique represents thousands of Web pages
in one display space without overlap.

Moreover, we aimed to roughly control the positions of
the icons. It is convenient if icons of large-scale data are
aligned according to user-specified semantics or placed
according to users’ designs because that makes it easier to
search for interesting icons in thousands of displayed icons.
Also, it is convenient if icons are placed to look similar to
the layout results of similar data. These are reasons why we
aimed to control their positions. It is an important
requirement for the visualization of Web sites because the
Web pages of Web sites often increase or decrease
gradually. The hierarchical data of a Web site with small

302 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

. The authors are with IBM Research, Tokyo Research Laboratory, 1623-14
Shimo-tsuruma, Yamato-shi, Kanagawa 242-8502 Japan.
E-mail: {itot, yyumi, ikehata, kajinaga}@trl.ibm.com.

Manuscript received 16 Mar. 2003; revised 22 Sept. 2003; accepted 14 Oct.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0002-0103.

1077-2626/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

time differences would therefore be similar and such
similar data should be similarly represented.

According to these motivations, we developed a visua-
lization technique that has the following features:

Feature 1: Efficient use of display spaces. It is often useful
if visualization techniques pack all data items in a
limited display space to provide a good overview.
Traditional orthogonal tree-based systems, such as
well-known file system viewers, have a bottleneck in
that they may need a large display space if there are
many nodes under one nonleaf node or if there is a deep
hierarchy.

Feature 2: No overlaps between nodes. Some visualization
methods may cause nodes to overlap in defocused
regions. Our technique does not overlap them, so it
provides a uniform overview of the data.

Feature 3: Aspect ratio of subspaces. When visualization
techniques subdivide a display space to represent the
parts of the given data, squarish subspaces are usually
preferable over thin subspaces so that users can visually
recognize the parts. Therefore, aspect ratios of subspaces
should be considered.

Feature 4: Flexible placement of arbitrarily shaped nodes.
When data items are represented as rectangular icons,
we often assume that the aspect ratios and sizes of all
icons should be entirely unified. On the other hand, we
also assume that the aspect ratios and sizes of all the
icons should be specifiable by users and they may even
be varied. This makes it possible to visually emphasize
important data items.

Feature 5: Similarity. It is desirable that similar data be
similarly represented. For example, it is desirable that
time-varying data be represented without drastically
changing the layout of data items. To satisfy this feature,
data items from similar data sets should be similarly
placed onto the display spaces.

Feature 6: Semantics of placement. It is desirable that the
positions of data items can be calculated according to
user-specified semantics, e.g., alphabetical order, score of
data items, or a user’s design.

This paper presents an algorithm for quickly packing a
set of arbitrarily sized rectangles in a small display space,
which is called “mesh-edge-based rectangle packing.” The
mesh-edge-based algorithm is applied to the presented
visualization technique so that it interactively displays
large-scale hierarchical data, where icons, thumbnails, or
borders are treated as arbitrarily sized rectangles. The
mesh-edge-based algorithm places a set of rectangles one by

one, while it looks for gaps between previously placed
rectangles where the remaining rectangles can be placed
without overlapping. It generates a Delaunay triangular
mesh that connects the centers of the placed rectangles and
refers to it to quickly find the gaps. It updates the mesh by
connecting the centers of the placed rectangles one by one.
This reduces the usage of display space, avoids overlaps
between data items, and quickly places all of the data items.
Using the algorithm, the visualization technique satisfies
Features 1, 2, 3, and 4.

This paper also presents an extension of the rectangle-
packing algorithm, which is called “template-based rectan-
gle packing” in this paper, that refers to templates
describing the ideal positions of the nodes of input data
so that the presented visualization technique satisfies
Features 5 and 6. The template-based algorithm places
rectangles as close as possible to the ideal positions
described in the templates, while it still reduces the usage
of display space and avoids overlaps among the data items.
Template positions can be created from semantics of nodes,
rough design by users, or the positions of nodes in a
previous time step.

We implemented the proposed technique, measured the
computation time and layout results, and compared it with
existing techniques. Section 6 describes the results of these
measurements.

2 RELATED WORK

2.1 Tree-Based Visualization

Tree representation is the most popular hierarchical data
visualization technique, used in many programs such as
well-known file system viewers. Several variations, such as
the Hyperbolic Tree [13], Cone Tree [5], Fractal Views [12],
and NicheWorks [22], have been described for the inter-
active visualization of large-scale tree data sets. These
techniques are suitable for visualizing the higher-level data
first and then exploring the lower-level data according to
the users’ choices. They are also suitable for visualizing the
connectivity among nodes. Carriere and Kazman repre-
sented all parts of large-scale hierarchical data by using a
Cone Tree in [5]. Wills also represented such data by using
NicheWorks [22]. These provide good overviews of the
data, but their results contain sparse regions.

2.2 Space-Filling Visualization

A Treemap [11], which represents hierarchical data in a
manner like nested column charts, is a well-known space-
filling approach for hierarchical data visualization. The
space-filling approach is especially useful for representa-

ITOH ET AL.: HIERARCHICAL DATA VISUALIZATION USING A FAST RECTANGLE-PACKING ALGORITHM 303

Fig. 1. Examples of the representation of hierarchical data. Colored dots denote leaf nodes and gray rectangular borders denote nonleaf nodes. Leaf

nodes of this data denote the Web pages of a Web site and the nonleaf nodes of the data denote the directory hierarchy. The leaf nodes are colored

according to their last update time and given heights according to their access frequencies.

tions appropriate to visualizing quantitative data attributes,
as opposed to seeing connectivity, for which tree-based
techniques may be more appropriate. This approach is also
suitable for representing all of the data in a compact display
space. The technique presented in this paper is close to
Treemap in terms of providing overviews of the data.

Treemap satisfies Features 1 and 2 since it quickly places
all parts of the data into one display space without overlap.
However, it has shape-related limitations in that some of
data items may be very thin. Squarified Treemap [4]
improved the shapes of the rectangular subspaces so that
it satisfies Feature 3. Ordered Treemap [18], [2] placed the
data items in the order of user-specified semantics so that it
satisfies Feature 6, in addition to improving the shapes of
the rectangular subspaces. Such an ordered layout is also
useful for dynamically updated data and, therefore, it
satisfies Feature 5. However, they still do not guarantee the
aspect ratios of the lowest-level data items. Quantum
Treemap and Bubblemaps [1], [2] were recently proposed
for the layout of icons or thumbnails when those aspect
ratios are fixed, so that they satisfy Feature 4. As described
in [2], the stable layout of dynamic data is a future research
direction. The template-based algorithm presented in this
paper addresses this issue.

Nested pie charts are also a space-filling approach
applied to hierarchical data visualization [6], [21]. They
also have shape-related limitations.

2.3 Semitransparent 3D Visualization

Information cubes [17] is a 3D hierarchical data visualiza-
tion approach, which positions data in nested semitran-
sparent hexahedrons. H-BLOBS [20] is also a 3D hierarchical
data visualization approach, positioning data in nested
semitransparent isosurfaces. These approaches have limita-
tions in that they require a graphics environment support-
ing 3D semitransparent rendering and in that users’ need
3D manipulation skills. Also, the computation times for
data layout are not clearly mentioned in their papers.

2.4 Graph Layout

Data layout techniques are important not only for hier-
archical data visualization but also for graph visualization.
The force-directed algorithm is a famous graph layout
approach which applies spring models to nodes and arcs. It
is somewhat computationally unstable and expensive for
iterative dynamics calculations, but, recently, many im-
proved algorithms have been reported for large-scale and
clustered graphs [9], [16]. Gansner et al. presented an
improved force-directed approach [8] that forms a Voronoi
diagram of nodes during each iterative calculation step. It
moves nodes to the centers of the Voronoi polygons to
refine the configuration. The heuristic used in this paper is
similar to theirs. Freivalds et al. presented a space-efficient
method for the representation of disconnected graphs [7]. It
applies a rectangle packing technique to tightly place the
disconnected parts of graphs.

2.5 Rectangle Packing

For our representation, a set of nested rectangles must be
properly packed in a display region so that the display
region is compact. A fast rectangle-packing algorithm is
therefore a key technology for our representation. The
packing problem is well-known in the field of VLSI circuit
design [15], for the layout of mechanical parts onto sheet

metal, and for the layout of parts of clothes. Many packing
algorithms apply various optimization schemes such as
genetic algorithms to minimize the layout areas. However,
these algorithms often require minutes or even hours of
computation time to find the optimized configurations and,
therefore, they are not suitable for interactive visualization
techniques. Our approach does not need to perfectly
minimize the layout space, but only needs to find a
reasonable configuration within a few seconds in order to
provide an interactive visualization.

A good heuristic for fast object packing has been
proposed for the purpose of texture generation [10]. While
the method packs objects of semiuniform sizes as textures,
our problem must deal with widely varied sizes of
rectangles.

Space management has been studied in some visualiza-
tion and user interface work. Design Galleries [14] tried to
optimize the distribution of data items on display spaces,
but it does not consider their overlap. The space manager
[3] of Bell et al. tried to avoid the overlap of rectangular
objects on display spaces during the addition and deletion
of the objects, but it does not consider the minimization of
the display spaces.

3 OVERVIEW OF HIERARCHICAL DATA LAYOUT

This section presents an overview of the proposed
hierarchical data visualization technique, especially for
providing an overview of large-scale, nonuniformly nested
hierarchical data. The technique packs rectangular icons in
rectangular regions and then repeats the packing of
rectangular regions to represent the hierarchy.

Fig. 2 shows an illustration of the order of hierarchical
data layout in the presented technique. The technique first
packs icons (painted square dots in Fig. 2) that denote leaf
nodes and then encloses them by rectangular borders that
denote nonleaf nodes. Similarly, it packs a set of rectangles
that belong to higher levels and generates the larger
rectangles that enclose them. Repeating the process from
the lowest level toward the highest level, the technique
places all of the data onto the layout area.

Fig. 3 shows the tree structure of the hierarchical data we
used as input data and the order of layout in the technique.
To define the order of the layout process, the technique
traverses the hierarchy using a breadth-first search algo-
rithm, starting from the highest level of the data. It then
places the data for each level in the reverse order of that
traversal.

304 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 2. Algorithmic overview of the layout process of the presented

technique. Numbers in this figure denote the order of the process.

Treating icons, thumbnails, and rectangular borders as a
set of rectangles, the presented hierarchical data visualiza-
tion technique applies a rectangle-packing algorithm to
place them onto one display space. The packing algorithm
places the rectangles tightly inside a small rectangular area
and encloses them by a bigger rectangular border that
denotes the parent nonleaf node.

If all nodes in a level are leaf-nodes and their sizes and
aspect ratios are not specified, our implementation assumes
that all nodes are represented by equal squares. In this case,
the implementation places them onto an orthogonal regular
grid, without using the rectangle packing algorithm. When
the level contains nl nodes, the implementation calculates
the rounded value of

ffiffiffiffiffi
nl

p
, and sets the horizontal or vertical

number of squares to that value. In Fig. 2, a set of nodes
inside rectangular borders, labeled as 1, 2, 3, 4, 5, and 7, are
placed onto the grid.

If the sizes and aspect ratios of the rectangles vary, the
technique needs more robust rectangle packing algorithms.
Sections 4 and 5 present the details of two rectangle-packing
algorithms.

4 MESH-EDGE-BASED RECTANGLE PACKING

ALGORITHM

This section presents the algorithm for quickly packing a set
of rectangles, which is used for the presented hierarchical
data visualization technique. Here, let us assume that
n rectangles are given and the packing algorithm positions
all of them onto an xy-plane while it tries to minimize the
layout area. Let us also assume that all edges of the
rectangles are parallel to the x-axis or y-axis. Under these
assumptions, the algorithm places the rectangles one by
one. Our implementation places rectangles in order of their

areas, as shown in Fig. 4. It first places larger rectangles, and
then searches for gaps to insert smaller rectangles.

4.1 Data Structures

This paper formalizes the problem as follows: Given
rectangles R ¼ fr1; . . . ; rng, the algorithm places the set of
rectangles one by one. Here, the algorithm favors
accelerating the rectangle packing process rather than
perfectly minimizing the layout space. We therefore did
not apply optimization schemes to find the configuration
of the rectangles, but used a heuristic to quickly find gaps
and place the remaining rectangles in the gaps. The
heuristic uses a triangular mesh connecting the centers of
the previously placed rectangles, as shown in Fig. 5. Let
us denote the mesh as MðV ;E; T Þ consisting of vertices
V ¼ fv1 . . . vnþ4g, edges E ¼ fe1 . . . elg, and triangles
T ¼ ft1 . . . tmg. The algorithm first positions the largest
rectangle r1 at the center of the layout area and generates a
rectangular space that entirely encloses the positioned
rectangle. Let the space be S, its four corner vertices be v1
to v4, and the center of ri be viþ4. We initially define the size
of S as twice the size of r1. The algorithm then generates
four triangles t1 to t4, which connect the five vertices v1 to
v5, as shown in Fig. 5a. Placing each new rectangle ri one by
one, the algorithm updates M as shown in Fig. 5, by
connecting the new vertex viþ4 to several vertices and
modifying several triangles. Note that M is independently
generated for each set of rectangles under one nonleaf node.

While deciding on a position in which to place a
rectangle, the algorithm calculates candidate positions on
E and evaluates the candidate positions. Section 4.2
describes the order of visiting elements in E and
Section 4.3 describes the evaluation of the candidate
positions. Section 4.4 describes the modification of the
triangular mesh. Section 4.5 describes the summary of the
algorithm.

4.2 Order of Referring to the Mesh Edges

The algorithm places the rectangles one by one while it
satisfies Features 1, 2, and 3. It searches for a position to
place the rectangle, which satisfies the following conditions
as much as possible:

Condition 1: No overlap between rk and any previously
placed rectangles.

Condition 2: Minimum extension of the layout area S and
keep aspect ratio of S close to its preferred value.

Here, the preferred aspect ratio in Condition 2 is the
same as the aspect ratio of the display or window space for

ITOH ET AL.: HIERARCHICAL DATA VISUALIZATION USING A FAST RECTANGLE-PACKING ALGORITHM 305

Fig. 3. Definition of the order of the layout using a breadth-first traversal.

Each node of the tree structure in this figure denotes a rectangle in Fig.

2. The hierarchical structure and the ordering in this figure correspond

exactly to Fig. 2.

Fig. 4. Illustration of layout of rectangles using the presented algorithm. The algorithm first places the largest rectange and then places the others in

the order of their areas while it searches for gaps where they can be placed without overlaps.

the highest level and 1 for the other levels based on the
heuristics that squarish region is easier to visually recog-
nize, as described in Feature 3.

To quickly search for positions where rectangles can be
placed satisfying the above conditions, the algorithm picks
suitable positions by using the following two strategies:

Strategy 1: It favors selecting sparsely populated regions
since it is easier to place rectangles in such places
without overlapping with other rectangles.

Strategy 2: It favors selecting interior positions since it is
easier to place rectangles in such locations without
enlarging the layout space.

Fig. 6a shows an example of a triangular mesh and

rectangles. Here, let El be the length of a mesh edge, El1 is

the length of the part of the edge that is inside the rectangle

whose center places it at an end of the edge, and El2 is the

length of the other part of the edge that is inside another

rectangle, as shown in Fig. 6b. Our technique calculates the

values of Elr ¼ El� ðEl1 þ El2Þ, the length of the remain-

ing part of the edge lying outside the two rectangles. Here,

the technique lets El1 or El2 take the value of zero when the

ends of the edge are on viði ¼ 1::4Þ.This is because it is more

likely that gaps will be found around mesh edges whose Elr
values are larger. The numbers in Fig. 6c denote that the

edges are ordered from the largest Elr to the smallest. The

algorithm searches for gaps on the edges in this order so

that it satisfies Strategy 1.

We use a Delaunay triangular mesh for the algorithm
according to our heuristics that Delaunay triangulation
makes candidate positions well-distributed. Since the
definition of Delaunay triangulation is the triangulation
that maximizes the minimum angle of M, it avoids making
closer candidate positions by adjacent edges connected with
a narrow angle.

At the same time, the algorithm counts cej , the number of
corner vertices v1 to v4 touching the edge ej. Fig. 7a shows
an example of the distribution of cej . This figure shows that
interior mesh edges have the smaller cej values.The
algorithm then groups the mesh edges according to their
cej values. The algorithm starts the trial placement of
rectangles on the edges. It first extracts edges from the cej ¼
0 group, then the cej ¼ 1 group, and, finally, the cej ¼ 2
group, so that it satisfies Strategy 2.

The algorithm extracts edges in each group in the sorted
order, starting from the edge that has the largest Elr value.
The algorithm calculates at most two candidate positions
where rk touches the rectangles previously placed at the
ends of ej, as shown by the two dotted rectangles in Fig. 7b,
and tries to place rk at each of these positions. For cej ¼ 1
edges, the technique tries to place rk at a position where rk
touches the rectangle previously placed located at one of the
ends of ej. In the case of cej ¼ 2 edges, the technique tries to
place rk at the center of ej because there are no rectangles at
the ends of cej ¼ 2 edges.

306 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 5. Processing flow of rectangle placement and update of mesh M.

Fig. 6. (a) Delaunay triangular mesh connecting centers of previously

placed rectangles. (b) Calculation of values of ELr. (c) Order of the ELr

values.

Fig. 7. (a) Values of cej for edges. (b) Two positions to try to place the

current rectangle.

4.3 Evaluation of Candidate Positions

Given a candidate position, the algorithm checks if the point
satisfies the two conditions described in Section 4.2. Starting
from the cej ¼ 0 edges, the algorithm refers to edges in the
sorted order and calculates candidate positions on the edges.
The algorithm then attempts to place rk at the candidate
positions. It checks overlaps between rk and previously
placed rectangles and calculates enlargement of S. If the
algorithm finds that one of the candidate positions satisfies
both conditions, it decides to place rk there and selects the
next rectangle. Otherwise, the algorithm selects the next edge
to check to see if it satisfies both conditions. If no cej ¼ 0 edge
satisfies both conditions, the algorithm continues with the
cej ¼ 1 edges and, finally, the cej ¼ 2 edges.

Even if the candidate position satisfies only Condition 1,
the algorithm can place rk after enlarging S. In this case, the
algorithm evaluates the point. Our implementation evalu-
ates points using a combination of layout area and layout
aspect ratio. It calculates the value aAþ rR, where a and r

are user-defined positive values. A is calculated as follows:

A ¼ Aafter=Abefore;

where Aafter is the area of S after the placement of rk and
Abefore is the area of S before the placement. Aafter can be
calculated after the enlargement of S described in
Section 4.4. R is calculated as follows:

R ¼ Rs=RbestðRs > RbestÞ
Rbest=RsðRbest > RsÞ;

�

where Rs is the aspect ratio of S after the placement of rk
and Rbest is the preferred aspect ratio, the aspect ratio of the
display or window space for the highest-level of the
hierarchy and 1 for the other levels. Again, Rs can be
calculated after the enlargement of S described in
Section 4.4. We usually define the value of a and r as
a ¼ r ¼ 1, but it depends on the requirements of users: If the
efficiency of the use of display spaces is important, a should
be larger than r.

If aAþ rR calculated on the candidate position is smaller
than the smallest in the values of previously processed
candidate positions, the algorithm saves the candidate
position with this aAþ rR value.If no candidate positions
satisfy both Conditions 1 and 2, the algorithm places rk at
the most recently saved candidate position because this was
evaluated as the best position.

4.4 Local Modification of the Triangular Mesh after
the Addition of Each Rectangle

If it is decided to place the rectangle ri at a
candidate position that does not satisfy Condition 2,
the algorithm enlarges S by moving some of the
viði ¼ 1::4Þ, as shown in Fig. 8. Here, let the positions
of viði ¼ 1::4Þ are ðx1; y1Þ; ðx2; y1Þ; ðx2; y2Þ; ðx1; y2Þ, where
x1x2; y1y2. Also, we position the four corners of ri at
ðxa; yaÞ; ðxb; yaÞ; ðxb; ybÞ; ðxa; ybÞ, where xaxb; yayb. The algo-
rithm enlarges S by recalculating the position of viði ¼ 1::4Þ
as follows:

if xa < x1 then x1 ¼ xa �mgn;

if ya < y1 then y1 ¼ ya �mgn;

if xb > x2 then x2 ¼ xb þmgn; and

if yb > y2 then y2 ¼ yb þmgn:

Here, mgn is a constant positive value. Our implementation
applies mgn ¼ 0:1Sw if Sw > Sh; otherwise, mgn ¼ 0:1Sh,
where Sw is the width of S and Sh is the height of S.

After the algorithm places ri by using the above steps, as
shown in Fig. 9a, it updates the triangularmesh by adding the
center of the placed rectangle viþ4 to the mesh. This process
first connects viþ4 to the twoother vertices of the triangles that
share the edge ej and divides each of the triangles into two
new triangles, as shown in Fig. 9b. The process then locally
modifies the mesh, starting from the triangles that share the
newly added edges. It selects an adjacent triangle to modify
and swaps their shared edge to improve the triangles, as
shown in Fig. 9c. The modification is recursively repeated
between the modified triangles and their adjacent triangles
until no triangles are modified. The detailed algorithm of the
mesh modification is described in [19].

4.5 Algorithm Summary

Fig. 10 shows the pseudocode of the algorithm. Here, we
consider the complexity in terms of the number of rectangles
n and assume that the numbers of vertices, edges, and
triangles of amesh are all proportional to n. To place all of the
rectangles, the algorithm requires at least Oðn lognÞ compu-
tation timeonaverage for the creation andmodification of the
Delaunay mesh described in Section 4.4. It also requires
Oðn lognÞ for sorting the rectangles according to their areas
and themesh edges according to theirElr values. In addition,
the algorithm requires Oðn2Þ computation time when it
checks for the overlap among the rectangles currently being
placed and all of the previously placed rectangles. Managing
the previously placed rectangles by using additional data

ITOH ET AL.: HIERARCHICAL DATA VISUALIZATION USING A FAST RECTANGLE-PACKING ALGORITHM 307

Fig. 8. (a) A rectangle and triangular mesh. (b) One more rectangle is placed on a mesh edge. (c) Corners of S are moved when the placement of the

current rectangle requires enlarging the layout region S.

structures can reduce the cost. If the rectangles are managed

by using a k-d tree, the computation time will be Oðn3=2Þ for
the overlap check. Also, if the near rectangles are grouped

into
ffiffiffi
n

p
groups, the computation time will also be Oðn3=2Þ.

5 TEMPLATE-BASED RECTANGLE-PACKING

ALGORITHM

The mesh-edge-based algorithm presented in Section 4 does

not explicitly control the positions of the nodes. It is

possible that the algorithm will yield very different layout

results for very similar hierarchical data sets. This section

presents an extension of the rectangle-packing algorithm, a

template-based algorithm, addressing this problem. The

template-based algorithm refers to a template describing

the ideal positions of nodes while it places the rectangles. It

places them as closely as possible to the positions described

in the template, while it still tries to minimize the layout

area. Not only does this solve the variability problem, but

the template-based algorithm can also be applied for

various other purposes, as described in Section 1.

Similar to the application of the mesh-edge-based
algorithm to hierarchical data visualization, the template-
based algorithm is also applied to place nodes in the lowest
level first and repeats a similar layout process from lower
levels to higher levels. Let us denote a template as TplðI; P Þ,
consisting of indices of rectangles I ¼ fi1 . . . ikg, and ideal
positions of the corresponding rectangles P ¼ fp1 . . . pkg.
The template-based algorithm supposes that templates are
provided for each nonleaf node, but this is not necessary. If
there are nonleaf nodes for which templates are not
provided, the mesh-edge-based algorithm is used for the
layout of the nodes under the nonleaf-nodes. The template-
based algorithm also supposes that a template does not
have to specify the positions of all nodes. If there are nodes
whose positions are not described in the template, the
template-based algorithm first places the other nodes whose
indices and positions are described and then places the
skipped nodes by using the mesh-edge-based algorithm.

It is possible that the scale between positions in a
template and the specified sizes of the rectangles will be
very different. The template-based algorithm therefore
normalizes the positions in the templates between

308 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 9. (a) Triangular mesh that connects the center of a rectangle and the currently placed rectangle (with thick red border). (b) Two (thick blue)

edges connecting the center of the current rectangle. (c) Locally modified mesh.

Fig. 10. Pseudocode of mesh-edge-based rectangle-packing algorithm.

ð�1;�1Þ and ð1; 1Þ and also normalizes the sizes of the
placed rectangles. After placing all the given rectangles, it
calculates the actual positions of the rectangles.

The template-based algorithm is different from the mesh-
edge-based algorithm on the following points:

. One more condition is applied in deciding where to
place the rectangles. See Section 5.1.

. The order of placing the rectangles is different. See
Section 5.2.

. The template-based algorithm refers to the triangles
of M, not to the edges. See Section 5.3.

. The equation for the evaluation of candidate posi-
tions is different. See Section 5.4.

After placing a rectangle, the template-based algorithm
applies the same local mesh modification technique
described in Section 4.4.

5.1 Conditions for the Placement of Rectangles

In addition to the two conditions described in Section 4.2,
the template-based algorithm applies one more condition so
that the rectangles are placed very close to the positions
described in templates as follows:

Condition 3: Rectangle rk should be placed as close as
possible to the position described in the template.

The mesh-edge-based algorithm evaluates the satisfac-
tion of Condition 2 by calculating aAþ rR. The template-
based algorithm calculates aAþ rRþ dD to evaluate the
combined satisfaction of Conditions 2 and 3, where d is a
user-defined positive value and D is the distance between
the candidate position in the normalized coordinates and
the ideal position of the rectangle described in the template.
The template-based algorithm tries to place rectangles at
several candidate positions, calculates aAþ rRþ dD at
each of the positions, and, finally, places the rectangle
where aAþ rRþ dD is smallest.

5.2 Order of Placing Rectangles

While the mesh-edge-based algorithm places rectangles in
the order of their area, the template-based algorithm places
them using the following steps:

1. The largest rectangle is positioned first.
2. The other rectangles are placed one by one, in the

order of their closeness to the largest rectangle, as
calculated from the positions described in the
template. See Fig. 11a. Here, closeness is evaluated

according to the distance between the positions of
each pair of rectangles as described in the template.

5.3 Order of Referring to Triangles

While the mesh-edge-based algorithm calculates candidate

positions on the mesh edges, the template-based algorithm

needs more candidate positions because of the additional

conditions. Therefore, while the mesh-edge-based algo-

rithm refers to the mesh edges to calculate the candidate

positions, the template-based algorithm refers to the

triangles and calculates the candidate positions inside the

triangles. The template-based algorithm first visits the

triangle that encloses the position of the rectangle currently

being positioned as described in the template and then

recursively visits adjacent triangles, as shown in Fig. 11b.

The order makes it possible to quickly find a suitable

position for the rectangle. Also, the algorithm skips visiting

a triangle if all of the distances between the position of the

rectangle and the three vertices of the triangle are not far

enough apart so that it can reduce unnecessary computa-

tion. It calculates the candidate positions on the lines

connecting the vertices and the edges of the triangle, where

the lines divide the angles of the vertices in regular parts.

The candidate positions are set where the rectangle

currently being placed can touch the previously placed

rectangles without creating unnecessary gaps, as shown in

Fig. 12. The number of candidate positions is defined so that

intervals between adjacent candidate positions are constant.

5.4 Evaluation of Candidate Positions

While examining the trial placement of a rectangle at a

candidate position, the template-based algorithm decides

that:

1. If the rectangle would overlap with any of the
previously placed rectangles, the rectangle cannot be
placed there.

2. Otherwise, the template-based algorithm calculates
the value aAþ rRþ dD. After trying the placement
for all of the candidate positions, it places the
rectangle where aAþ rRþ dD is smallest.

The aAþ rRþ dD values will increase while referring to

triangles in the above order. This means that the extension

can skip examining many of the distant triangles.

ITOH ET AL.: HIERARCHICAL DATA VISUALIZATION USING A FAST RECTANGLE-PACKING ALGORITHM 309

Fig. 11. Template-based rectangle-packing algorithm. (a) Order of placing rectangles. The algorithm first places the largest rectangle and then

places the others in the order of their distances from the largest rectangle. This “adjacency-based order” is effective to tightly pack the rectangles

next to each other. (b) Order of referring to triangles.

6 EXPERIMENTS

We implemented the proposed algorithms in Java and
performed tests on an IBM IntelliStation Z-Pro (Pentium III
933 MHz) with Windows 2000.

The proposed technique aimed to represent data items as
equishaped icons without overlapping each other. Quantum
Treemap [1], [2] therefore seems one of the most similar
approaches. We compared the results of our algorithms with
those of Quantum Treemaps. We implemented Quantum
Treemaps by applying the Squarified Treemap [4] and Strip
Treemap [2] before the quantization of rectangular sub-
spaces. Here, the proposed algorithms allow leaf nodes and
nonleaf nodes to bemixed under the same nonleaf nodes. It is
unclear whether Quantum Treemaps allow such data
structures and, therefore, we inserted nonleaf nodes between
the parent nonleaf node and leaf nodes.

We used four data sets generated from directory
hierarchies of the following free software:

1. Java Development Kit 1.3.1.04 (http://java.sun.
com/j2se/),

2. Apache Tomcat 4.1.12 (http://jakarta.apache.org/
tomcat/),

3. Apache AXIS 1.0 (http://ws.apache.org/axis/), and
4. IBM Web Services Toolkit 3.3 (http://www.alpha

works.ibm.com/tech/webservicestoolkit/).

We generated tar files of the above software under the
installed directory and then converted the table of contents
in the tar files into our hierarchical data format and, finally,
represented them by placing the data items onto displays.
Table 1 shows the sizes of the four data sets.

We displayed several hierarchical data sets using the
mesh-edge-based algorithm and measured the computation
times, average aspect ratios, and average wasted space
ratios. Here, an aspect ratio is calculated as the ratio
between the lengths of the horizontal and vertical edges of a
rectangle. The wasted space ratio is calculated as the ratio
between the area of the rectangle and the sum of the areas
of its child rectangles and icons. We compared the results of
the proposed algorithm with those of Quantum Treemaps.

Table 2 shows the computation times. It shows that our
technique places hierarchical data including thousands of
nodes in reasonable computation times. However, it is
much slower than Treemaps. Our implementation of the
mesh-edge-based packing algorithm is still a greedy one
that requires Oðn2Þ computation for overlap check, but, as
mentioned in Section 4.5, the complexity of the proposed
algorithm can be reduced to Oðn3=2Þ. Speed up of the
packing algorithm is one of our future goals.

Table 3 shows the average aspect ratios of the rectan-
gular subspaces. The results of the proposed algorithm are
even better than those of Squarified Treemap. Table 4 shows
the average wasted space ratios which are calculated in
each rectangular subspace. The results of the proposed
algorithm are fair, but, in most cases, Quantum Treemaps
has the better results. Here, [2] does not seem to mention the
quantization of deeply nested data; therefore, our imple-
mentation might independently quantize them under
nonleaf nodes. This may cause different sizes of the leaf
nodes, but we did not unify these sizes in our experiments.
When we entirely unified the sizes of all leaf nodes as the
smallest size, the wasted space ratios of Quantum Treemaps
occasionally became more than 1 in our experiments.

310 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 12. Calculation of candidate positions. (a) A triangle and three rectangles on the vertices of the triangle. (b) Candidate positions that are

generated where the rectangle currently being placed touches one of the previously placed rectangles.

TABLE 1
Sizes of the Four Data Sets

Fig. 13 shows a simpler example of representation of the

same data using the three techniques. This example also

shows that Quantum Treemaps bring better space usage

and our technique brings better aspect ratios. Here, the

colors of the leaf nodes are simply calculated from their

sequential numbers.

ITOH ET AL.: HIERARCHICAL DATA VISUALIZATION USING A FAST RECTANGLE-PACKING ALGORITHM 311

TABLE 2
Computation Times

TABLE 4
Average Wasted Space Ratios

TABLE 3
Average Aspect Ratios

Fig. 13. Representation of the same hierarchical data using the three techniques. (a) Mesh-edge-based rectangle packing. (b) Quantum Squarified

Treemap. (c) Strip Squarified Treemap.

Next, we intentionally generated time series data by
repeatedly removing some leaf nodes from the original
hierarchical data and represented the sequence of the data
by using the template-based algorithm. Fig. 14 shows an
example of the sequence of hierarchical data represented by
template-based packing algorithm. Again, the colors of the
leaf nodes are simply calculated from their sequential
numbers. This example shows that the template-based
packing algorithm achieves the stable display layout of time
series data.

We also measured the stability of the display layout
using the three techniques, with intentionally generated
time series data by repeatedly removing some leaf nodes
from the original hierarchical data, which was data set (2)
shown in Table 1. Table 5 shows the average and worst
values of the distances of the rectangles between the
previous and next layouts of the time-series hierarchical
data. Here, our implementation of Quantum Treemaps
calculated the central positions of the subspaces in the
normalized spaces, ð�1;�1Þ to ð1; 1Þ, and the distances of
the corresponding subspaces between the previous and the
next layout. This result shows that the template-based
algorithm achieved more stable layouts.

7 CONCLUSION AND FUTURE WORK

This paper presented a new hierarchical data visualization
technique that represents the hierarchy by using nested
rectangles. To place the rectangles in one display space, the
technique applies two rectangle-packing algorithms that
refer to triangular meshes connecting the centers of the
rectangles to find suitable positions at which to place
rectangles. Experimental results show that the technique
packs rectangles with good aspect ratios and achieves stable
layouts for time-varying data.

The following issues are area of our possible future work:
Various sizes and aspect ratios of leaf nodes. Since one

feature of the proposed technique is even representation of
leaf nodes, our implementation fixes their sizes and aspect
ratios. However, our technique has the capability of
representing leaf nodes with arbitrary sizes and aspect
ratios by applying the rectangle-packing algorithm for all
nodes without using any orthogonal grids. We would like
to extend our implementation so that the sizes and aspect
ratios of leaf nodes denote additional attributes.

Speed up. Our implementation of the packing algo-
rithms is still too greedy and requires Oðn2Þ computation
for the overlap check, though, as mentioned in Section 4.5,

312 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004

Fig. 14. Representation of a sequence of hierarchical data using the template-based algorithm. (a) First layout by mesh-edge-based algorithm. (b)

Second layout by the template-based algorithm, referring to the template that describes the first layout. (c) Third layout by the template-based

algorithm, referring to the template that describes the second layout.

TABLE 5
Average and Worst Values of Distances D of Corresponding Nodes between Previous and Next Layouts

the complexity of the proposed algorithm can be reduced to

Oðn3=2Þ. We would like to implement the faster algorithm

and measure the computation times again.
Comparison of triangulation methods. We have no

theoretical justification that Delaunay triangulation is the

best method for our purpose. We would like to implement

other triangulation methods for the purpose of rectangle

packing and compare them with Delaunay triangulation.
User study. It is interesting that Strip Treemap obtained

good user study results [2] though other Treemaps

occasionally obtained better numerical evaluations. We

would like to show our technique to various users and

measure the usability.
Applications. Though we did not describe it in this

paper, we have applied the technique for the visualization

of Web accesses [23] and real-time monitoring of distributed

processes [24]. We would like to explore other applications

that the proposed technique can be applied to. We think

that semantics-based and design-based layout, which we

have not tested with the template-based algorithm, may

allow for other applications.

REFERENCES

[1] B. Bederson, “PhotoMesa: A Zoomable Image Browser Using
Quantum Treemaps and Bubblemaps,” Proc. UIST 2001, pp. 71-80,
2001.

[2] B. Bederson and B. Schneiderman, “Ordered and Quantum
Treemaps: Making Effective Use of 2D Space to Display
Hierarchies,” ACM Trans. Graphics, vol. 21, no. 4, pp. 833-854,
2002.

[3] B.A. Bell and S.K. Feiner, “Dynamic Space Management for User
Interfaces,” Proc. UIST 2000, pp. 238-248, 2000.

[4] D.M. Bruls, K. Huizing, and J.J. Wijk, “Squarified Treemaps,” Proc.
Data Visualization 2000 (Joint Eurographics and IEEE TCVG Symp.
Visualization), pp. 33-42, 2000.

[5] J. Carriere and R. Kazman, “Research Paper: Interacting with
Huge Hierarchies beyond Cone Trees,” Proc. IEEE Information
Visualization ’95, pp. 74-81, 1995.

[6] M. Chuah, “Dynamic Aggregation with Circular Visual Designs,”
Proc. IEEE Information Visualization ’98, pp. 35-43, 1998.

[7] K. Freivalds, U. Dogrusoz, and P. Kikusts, “Disconnected Graph
Layout and the Polyomino Packing Approach,” Proc. Graph
Drawing 2001, pp. 378-391, 2001.

[8] E. Gansner et al., “Improved Force-Directed Layouts,” Proc. Graph
Drawing ’98, pp. 364-373, 1998.

[9] M.L. Huang et al., “A Fully Animated Interactive System for
Clustering and Navigating Huge Graphs,” Proc. Graph Drawing
’98, pp. 374-383, 1998.

[10] T. Igarashi et al., “Adaptive Unwrapping for Interactive Texture
Painting,” Proc. Symp. Interactive 3D Graphics 2001, pp. 209-216,
2001.

[11] B. Johnson et al., “Tree-Maps: A Space Filling Approach to the
Visualization of Hierarchical Information Space,” Proc. IEEE
Visualization ’91, pp. 275-282, 1991.

[12] H. Koike, “Fractal Views: A Fractal-Based Method for Controlling
Information Display,” ACM Trans. Information Systems, vol. 13,
no. 3, pp. 305-323, 1995.

[13] J. Lamping, R. Rao, and P. Pirolli, “The Hyperbolic Browser: A
Focus+Context Technique for Visualizing Large Hierarchies,”
J. Visual Languages and Computing, vol. 7, no. 1, pp. 33-55, 1996.

[14] J. Marks et al., “Design Galleries: A General Approach to Setting
Parameters for Computer Graphics and Animation,” Proc. ACM
SIGGRAPH ’97, pp. 389-400, 1997.

[15] H. Murata et al., “VLSI Module Placement Based on Rectangle-
Packing by the Sequence-Pair,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 15, no. 12, pp. 1518-1524,
1996.

[16] A.J. Quigley et al., “FADE: Graph Drawing, Clustering and Visual
Abstraction,” Proc. Graph Drawing 2000, pp. 197-210, 2000.

[17] J. Rekimoto, “The Information Cube: Using Transparency in 3D
Information Visualization,” Proc. Third Ann. Workshop Information
Technologies & Systems, pp. 125-132, 1993.

[18] B. Shneiderman and M. Wattenberg, “Ordered Treemap Layouts,”
Proc. IEEE Information Visualization Symp. 2001, pp. 73-78, 2001.

[19] S.W. Sloan, “A Fast Algorithm for Constructing Delaunay
Triangulation in the Plane,” Advances in Eng. Software, vol. 9,
pp. 34-55, 1987.

[20] T.C. Sprenger et al., “H-BLOB: A Hierarchical Visual Clustering
Method Using Implicit Surfaces,” Proc. IEEE Visualization 2000,
pp. 61-68, 2000.

[21] J. Stasko and E. Zhang, “Focus+Context Display and Navigation
Techniques for Enhancing Radial, Space-Filling Hierarchy Visua-
lizations,” Proc. IEEE Information Visualization Symp. 2000, pp. 57-
65, 2000.

[22] G.J. Wills, “NicheWorks—Interactive Visualization of Very Large
Graphs,” J. Computational and Graphical Statistics, vol. 8, pp 190-
212, 1999.

[23] Y. Yamaguchi, T. Itoh, Y. Ikehata, and Y. Kajinaga, “Interactive
Poster: Web Site Visualization Using a Hierarchical Rectangle
Packing Technique,” Proc. IEEE Symp. Information Visualization
2002 Interactive Poster Session, 2002.

[24] Y. Yamaguchi and T. Itoh, “Visualization of Distributed Processes
Using ’Data Jewelry Box II’ Algorithm,” Proc. Computer Graphics
Int’l 2003, 2003.

Takayuki Itoh received the BS, MS, and PhD
degrees from Waseda University in 1990, 1992,
and 1997. He is a research staff member at IBM
Research, Tokyo Research Laboratory. He is
also a visiting assistant professor at Kyoto
University, Academic Center for Computing
and Media Studies. His research interests are
in the area of geometric modeling, computer
graphics, CAD/CAE, scientific and information
visualization, Web Services, and XML security.

He is a member of the ACM and the IEEE Computer Society.

Yumi Yamaguchi received the BS and MS
degree from the Department of Information
Sciences at Ochanomizu University in 2000
and 2001. She is a researcher at IBM Research,
Tokyo Research Laboratory. Her research inter-
ests are in the area of scientific and information
visualization and Web Services.

Yuko Ikehata received the BS degree from the
Department of Information Technology at Ritsu-
meikan University in 1997 and the MS degree
from the Graduate School of Computer Science
at Keio University in 2000. She is a researcher at
IBM Research, Tokyo Research Laboratory. Her
research interests are in the area of collabora-
tion systems, education systems, graphical user
interfaces, and information visualization.

Yasumasa Kajinaga received the BS, MS, and
PhD degrees from the University of Tokyo in
1994, 1996, and 1999, respectively. He is a
reseacher at IBM Research, Tokyo Research
Laboratory. His work ranges over various areas
in recent computer engineering, such as optimi-
zation, information visualization, and perfor-
mance of Web services and its security.

ITOH ET AL.: HIERARCHICAL DATA VISUALIZATION USING A FAST RECTANGLE-PACKING ALGORITHM 313

