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Abstract Dimensionality reduction (DR) techniques for multidimensional data serve as powerful tools for
visualization and understanding of the structure of the data. Various DR methods have been developed to
extract specific features of the data over the years. However, selection of the optimal DR method and fine-
tuning parameters are still challenging, as these choices vary based on the characteristics of the dataset.
Consequently, data scientists often rely on their experience or undertake extensive experimentation to
identify the most suitable approach. This paper proposes a semi-automatic method for selecting appropriate
DR techniques through scatterplot evaluation. Initially, our approach applies a range of DR methods to the
given multidimensional data to compute two-dimensional values. Next, we generate scatterplots from the
two-dimensional data and calculate scores reflecting the distribution and spatial relationships among the
points. Scatterplots that provide insights achieve higher scores, enabling an efficient selection of DR
methods based on their visualization. We demonstrate the effectiveness of the presented method through
two case studies: The first one is an e-commerce review dataset, and the second focuses on a dataset derived
from music feature extraction.

Keywords Dimensionality reduction � Multidimensional data visualization � Scatterplot �
Scatterplot selection � Evaluation of dimensionality reduction � Text data visualization

1 Introduction

The collection and utilization of multidimensional datasets have increasingly become commonplace, thanks
to advancements in machine learning and the evolution of database systems utilization. These datasets
contain not only transaction and machine processing data but also a wide variety of unstructured data types,
including texts, music, images, and videos, which are vectorized into multidimensional forms. However,
difficulties remain in the ability of humans to navigate and extract valuable insights from these large and
complex datasets as stored in extensive tables. To address this problem, many studies have employed
dimensionality reduction (DR) techniques to extract only the most significant features and visualize them.
Such visualization facilitates an intuitive understanding of the data, ranging from an overview to detailed
characteristics, and enables the evaluation of data processing techniques and models that involve
vectorization.
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There have been various types of DR techniques over recent decades. These methodologies fall into two
primary categories: linear techniques, such as Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA), and nonlinear techniques, including t-distributed Stochastic Neighbor Embedding (t-
SNE) and Uniform Manifold Approximation and Projection (UMAP). As shown in Sect. 2.1, numerous
studies have compared and evaluated these DR techniques in terms of their characteristics, parameters, and
accuracy. Nevertheless, the appropriate selection and application of DR techniques remain challenging for
several reasons. First, the optimal DR method varies for each dataset, dependent on its features and
objectives. Consequently, data science experts often rely on their experience for selection, leading to a
subjective determination of the ‘‘best’’ method. This subjectivity is compounded by the lack of a clear
definition for ‘‘good’’ DR results; therefore, assessments of DR methods are ambiguous. Second, the
computational cost associated with DR is significantly high. Here, DR is basically applied to vast multi-
dimensional datasets, where manual implementation, computation, and assessment can be time-consuming.
This challenge is accelerated especially in the case of unstructured data, such as text, where vectors are often
sparse and dimensionality can be extremely high; thus, computation time increases. These issues have
emerged in the processing of unstructured data, highlighting the need for more efficiency. Bioinformatics is
one of the fields that extensively utilizes DR techniques. Numerous studies have demonstrated the preva-
lence of employing DR to analyze and comprehend the characteristics of genetic data, particularly RNA
sequences, due to the large size of the data columns. However, the optimal DR method for a specific dataset
remains an active area of research. Heiser and Lau (2020) applied single-cell RNA sequence (scRNA-seq)
data to visualize clusters and identify dispersion trends in local and global distance distributions. Huang
et al. (2022) evaluated the performance of various DR techniques on single-cell transcriptomic data.
Remeseiro and Bolon-Canedo (2019) employed DR methods for efficient feature selection in medical
imaging, biomedical signal processing, and DNA microarray data. DR techniques have also been applied to
other domains, such as face recognition and text analysis (Ayesha et al. 2020). Ayesha et al. (2020) dis-
cussed the mapping of appropriate DR methods based on the type of data being analyzed. While DR
methods have been widely adopted across various data types, the selection of the most suitable DR tech-
nique for a particular case remains a topic of ongoing debate.

In this study, we present a method designed for the semi-automatic selection of appropriate DR tech-
niques for multidimensional data. Initially, we systematically apply a variety of DR methods, each with a
range of potential parameters, to a multidimensional dataset. After calculating two-dimensional vectors by
the above process, we generate scatterplots in two-dimensional spaces for each of DR methods. Then, we
compute scores that reflect the distribution and spatial relationships of the points for every scatterplot
corresponding to each of the DR methods. The selection process uses these scores to pick out only scat-
terplots worth a closer look. We calculate multiple scores for each scatterplot since what makes a scatterplot
interesting can depend on many factors, like its shape and features. These scores are then integrated into a
single score through weighting which is tailored to the specific objectives of the visualization. Finally,
scatterplots that offer significant insights receive higher scores and they enable automatic scatterplot
selection. This methodology not only serves as a proxy for selecting DR methods but also significantly
reduces the time users spend in the cycle from implementation to assessment.

In this paper, we introduce two application cases to illustrate the efficacy of our proposed method. The
first dataset comprises Amazon e-commerce review data, from which we have generated embeddings with
767 dimensions, derived from the review texts. Each reviews are associated with product categories. The
second dataset is Japanese pop music features data. It consists of over 1,000 dimensions computed using
machine learning techniques, and each rows are associated with the release year of the tracks. Figure 1
shows an example of scatterplot selection by this technique. We implemented four metrics, scoring with 3
types of weighting and a dashboard that shows the automatic scatterplot selection result based on these
scores. It enables us to easily find the most preferable DR methods and understand the characteristics of data
more easily.

2 Related work

This section first introduces comprehensive review papers on dimensionality reduction methods and
experimental research applied to various types of data, with a particular focus on text embeddings. In the
latter parts, we discuss recent advancements in multidimensional data visualization techniques, specifically
the techniques of scatterplot evaluation.
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2.1 Dimensionality reduction methods for multidimensional data visualization

For decades, various types of dimensionality reduction (DR) techniques for analyzing multidimensional data
have been developed and tailored to meet specific analytical requirements. Extensive survey and review
studies (Fodor 2002; Van Der Maaten et al. 2009; Anowar et al. 2021; Ayesha et al. 2020; Saini and
Sharma 2018; Malik et al. 2023) have been conducted to evaluate these methods and select the optimal
approach for each data type. These studies provide comprehensive overviews of principal DR method-
ologies, detailing their characteristics and assessing them based on criteria such as classification accuracy,
correlation, parameters, and computational efficiency. Particularly, Nanga et al. (2021) highlighted their
applicability across diverse data types including text and images.

Similarly, Engel et al. (2012) reviewed various DR methods from a visualization perspective. The
review concluded that no single method can be preferred over another, and the effectiveness of state-of-the-
art methods mainly depends on the data and application. Consequently, many studies focused on applying
specific DR methods to particular fields of datasets and evaluating them through comparative analysis. For
instance, Wang et al. (2023) investigated the accuracy of DR results using time-of-flight data, while Heiser
and Lau (2020) visualized the clusters and identified dispersion trends in local and global distance distri-
butions by applying single-cell RNA sequencing (scRNA-seq) data. Nadia Syed and Jamil (2023) assessed
the accuracy of PCA, LDA, and SVD while applying to cancer datasets, further suggesting that incorpo-
rating feature extraction and selection methods into DR processes can significantly enhance classification
performance.

We apply the DR methods mainly to the text data in this study. Huang et al. (2005) proposed a
mechanism for comparing and evaluating the effectiveness of DR in the visual exploration of text docu-
ments. Their approach assessed which DR best preserves the interrelationships within a set of text docu-
ments, as interpreted through numerous visualizations. Prior to implementing DR, text data are transformed

Fig. 1 Visualization dashboard application example. Initially, our proposed technique applies various DR techniques to high-
dimensional data, reducing the dimensions to two. The resulting scatterplots are evaluated using four metrics with three
weights each. The application automatically selects and visualizes the highest-scoring scatterplots, enabling efficient
exploration and understanding of high-dimensional data
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into an n x m document-term matrix (the number of documents and terms are n and m, respectively). Similar
to this study, there have been various methods for processing text data as is. On the other hand, our proposed
methods involve the creation of embeddings prior to DR to enhance the versatility of these methods. Singh
et al. (2022) introduced a novel DR technique that employs the ‘‘GloVe’’ word embedding method to
eliminate redundant features by assessing the similarity score between word vectors and comparing the
results with those of existing DR methods. Vashisth and Meehan (2020) compared multiple Natural Lan-
guage Processing (NLP) techniques such as Bag of Words, Word Embedding (W2Vec, GloVe), and tra-
ditional Machine Learning techniques (Logistic Regression, Support Vector Machine, and Naı̈ve Bayes) for
gender classification in tweets. Yamada et al. (2018) also proposed a new embedding model named
Wikipedia2Vec. Both studies utilized DR methods to demonstrate the effectiveness of these models and
systems. In our experimental section, we apply doc2vec and SimCSE (Gao et al. 2021) as preprocessing
steps. The SimCSE results revealed more distinct clusters and characteristics across multiple datasets and
DR methods; thus, this paper introduces only the results applying SinCSE.

Based on the related work mentioned above, we employed eight DR techniques in our case studies as
shown in Table 1. We chose these methods because they are well-known and represent different combi-
nations of features. Linear methods exhibit a propensity for effectively analyzing global structure, while
nonlinear methods excel at capturing local structure, though they require more computational power.
Anowar et al. (2021), Van Der Maaten et al. (2009), and Saini and Sharma (2018) have clearly and
effectively summarized the features of each DR technique, so we refer to their work in our analysis.

2.2 Numerical evaluation of scatterplots

A certain number of metrics for evaluating two-dimensional scatterplots have been devised. Wilkinson et al.
(2005) introduced Scagnostics, providing nine comprehensive metrics based on the distribution of points in
a scatterplot to identify shapes, outliers, and correlations among others. Wang et al. (2019) have presented
an improved Scagnostics method based on human visual perception for determining outliers and clusters in
scatterplots. Based on this approach, Itoh et al. (2023) calculated scores based on several independent
metrics for each scatterplot. Moreover, they implement a graph coloring algorithm to extract a set of various
scatterplots while avoiding selecting sets of close vectorized scores that have similar features. In our
proposed technique, we employed metrics grounded in the scoring approach in the above study.

There have been studies on improved calculation for the metrics presented by Wilkinson. Aupetit and
Sedlmair (2016) and Sedlmair et al. (2012) have discussed the separability of classes within scatterplots.
Harrison et al. (2014) have addressed the correlation among clusters of points. Sips et al. (2009) and Lee
et al. (2013) have focused on the consistency and integrity of classes when mapping high-dimensional data
to lower-dimensional scatterplots. Notably, Sedlmair et al. (2012) have defined the characteristics of data
and distributions regarding class separability in scatterplots and applied these definitions to data after
dimensionality reduction. Dang and Wilkinson (2014) and Matute et al. (2017) have proposed methods for
organizing, summarizing, and exploring large sets of scatterplots.

3 Evaluation of dimension reduction methods using scatterplot selection

This section presents a processing flow of the dimensionality reduction (DR) and scatterplot selection
technique. The technique calculates the scores of each scatterplot based on multiple metrics. Furthermore,
the presented technique displays the high score scatterplots on the top of the screen space.

3.1 Dimensionality reduction methods

This technique applies eight different methods of dimensionality reduction, which helps us to visualize
complex multi-dimensional data more easily. This section does not describe the details of these methods
here because they have already been well-known and widely used. The DR process in this paper is
specifically aimed at visualization purposes, thus converting multi-dimensional datasets into two-dimen-
sional ones. The DR methods applied in this study include the following:

1. PCA (Principal Component Analysis)
2. t-SNE (T-distributed Stochastic Neighbor Embedding)
3. LDA (Linear Discriminant Analysis)
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4. MDS (Multi-Dimensional Scaling)
5. UMAP (Uniform Manifold Approximation and Projection)
6. SVD (Singular Value Decomposition)
7. ICA (Independent Component Analysis)
8. KernelPCA (Kernel Principle Component Analysis)

The application of a two-step dimensionality reduction process, which is the combination of different DR
methods, has been shown to yield superior results compared to the use of a single DR method. Agis and
Pozo (2019) employed a combination of PCA and t-SNE, while Padron-Manrique et al. (2022) and Stolarek
et al. (2022) utilized a combination of PCA and UMAP. In all cases, the authors reported improved
performance and quality compared to the results obtained by applying t-SNE or UMAP alone. Agis et al.
discovered that the combination of PCA and t-SNE enhances the quality of clusters related to structural
states. Stolarek et al. found that the performance of UMAP can be further improved by preprocessing the
image input using PCA. Padron et al. introduced a novel method called sc-PHENIX, which utilizes the
initialization of PCA-UMAP space and provides a closer approximation to the true underlying manifold of
scRNA-seq data compared to UMAP, PHATE, and MAGIC.

Our study also explores the two-step dimensionality reduction consists of the following steps:

1. Initially reduce the dimensions to a specified number based on the Cumulative Contribution Rate
calculated by PCA.

2. Subsequently reduce to two-dimensions using the selected methods.

3.2 Data structure

This paper formalizes the data structure after applying the DR methods. m-dimensional dataset A has n
individuals as A ¼ fa1; a2; :::; ang. The i-th individual ai has the m-dimensional values as
ai ¼ ðai1; ai2; :::; aimÞ. Additionally, each sample has been assigned to one or more classes. A set of scat-
terplots formed from every pair of dimensions is described as S ¼ fs1; s2; :::; sNg, where N is the total
number of scatterplots. Each scatterplot has a set of scores calculated based on predefined metrics. This
section describes the score of the j-th scatterplot as sj ¼ ðsj1; sj2; :::; sjMÞ, where M is the number of metrics.

3.3 Selection of metrics

Based on the objective of visualization and DR, we defined ‘‘good results of DR’’ as follows:

• Represent the features of the original data
• Preserve the structure of the original data

We implemented the following four metrics to assist in finding the methods that provide the above results.

1. Separability of clusters
2. Separability of classes
3. Continuity of classes

Table 1 The characteristics of DR techniques we selected

DR
Method

Goal Supervision Linearity Topology Computational Complexity

PCA Maximize variance Unsuper Linear Random
Projection

Oðd2nþ n3Þ

LDA Maximize class separation Super Linear Random
Projection

Oðd2nÞ; n[ dandOðd3Þ; d[ n

MDS Preserve Euclidean pairwise
distances

Unsuper Nonlinear Manifold Oðn3Þ

t-SNE Preserve local structure Unsuper Nonlinear Manifold Oðn2Þ
UMAP Preserve local and global structure Unsuper Nonlinear Manifold O(nlogn)
ICA Maximize statistical independence Super Linear Random

Projection
O½2diðd þ 1Þn�

SVD Minimize reconstruction error Unsuper Linear Random
Projection

Oðd2nþ n3Þ

KPCA Linearly separate data Unsuper Nonlinear Manifold Oðn3Þ
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4. Conservation of distance between a pair of points

3.3.1 Separability of clusters

We can expect to discover through the observation of scatterplots if the points are clearly separated into a
finite number of clusters after applying DR. The score can be high with the results of applying techniques
that maximize separation between classes, such as LDA. The following metric evaluates this property.

Firstly, the technique applies hierarchical clustering to the set of points, forming into a certain number
(e.g., 5 to 20) of clusters. The clustering result is denoted as ci of the scatterplot si. For each number of
clusters u ¼ 5; 6; � � � ; 20, our technique evaluates the clustering results using the Calinski-Harabasz index
(Caliński and Harabasz 1974) and assigns the maximum score calculated among the clusters as the score for
scatterplot si. A high score indicates both high cohesion within each cluster and high separation between
multiple clusters.

sk1 ¼ maxðCalinskiHarabaszðckÞuÞ

3.3.2 Separability of class

Scatterplots in which points belonging to specific classes are clearly separated from other points of other
classes often provide valuable insights. The following metric evaluates this property.

The proposed technique quantifies the separability of classes based on information entropy. Specifically,
for a scatterplot constructed from the two dimensions, the following value is calculated:

Hði; jÞ ¼ �
Xn

k¼1

XC

c¼1

pðyk ¼ cjðak1; ak2ÞÞ log pðyk ¼ cjðak1; ak2ÞÞ

yk represents the class of the k-th sample, ðak1; ak2Þ denotes the coordinate values of the k-th sample, and C
is the number of classes. In our implementation, the scatterplot is divided into L subregions and the entropy
Hði; jÞl of the l-th subregion is calculated using the aforementioned equation. Finally, the score of the k-th
scatterplot is determined using the following equation:

sk2 ¼ Hmax �
1

L

X
Hði; jÞl

� �
=Hmax

Here, Hmax is the maximum number of Hði; jÞl.

3.3.3 Continuity of class

When the classes associated with a set of points have an order and the classes are arranged in sequence (such
that a gradient is observed when coloring is applied with consideration for order), we can explain that the
data preserve the characteristics of the original points classes. The following metric evaluates this property.

Firstly we calculate the average position of the points included in each class. Secondly, we generate a
Delaunay triangular mesh connecting the average positions of each class and calculate the score as the sum
of the absolute differences in the sequential IDs of classes between the endpoints of each edge. We describe
the score as the following equation that calculates the difference between the sequential IDs of classes of the
v-th and (vþ 1)-th vertices connected by an edge, where ci denotes the sequential ID of a class assigned to
each average position.

sk3 ¼
Xm

v¼1

jðcvþ1 � cvÞj

A lower score indicates higher continuity; therefore, we apply sk3 ¼ 1� sk3 after normalization described in
Sect. 3.4.
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3.3.4 Conservation of distance between points

Effective DR methods maintain the original distances between points well. Specifically, certain DR tech-
niques aim to preserve the global structure and the relationships among neighboring points. The following
metric evaluates this property.

To verify the preservation of distances, we applied Spearman’s rank correlation coefficient. Initially, for
both the original multi-dimensional values and the resulting two-dimensional values, the method computes
the distances across all possible pairs of points. Subsequently, the method establishes a ranking of these
point pairs based on their distances. The degree of similarity between the ranking of original multi-
dimensional values and that of the two-dimensional values is computed using Spearman’s rank correlation
coefficient, indicating that scatterplots closely reflecting the original dataset structure are deemed to have a
higher score. The first score of the k-th scatterplot is calculated using the following equation:

sk4 ¼ jSpearðrankðdistði; jÞmulti�dimensionalÞ; rankðdistði; jÞtwo�dimensionalÞÞ
2j

Here, Spear is Spearman’s rank correlation coefficient, rank is the ranking of the pairs, and dist(i, j) is the
distance of i-th and j-th point.

3.4 Score weighting

The technique generates the four-dimensional vector with the scores calculated by the metrics for each
scatterplot and normalizes them with their minimum/maximum values. Here, we define the weight for each
metric w ¼ fw1;w2;w3;w4gðw1 þ w2 þ w3 þ w4 ¼ 1:0Þ. Finally, we calculate the score for each scatterplot
as the sum of the weighted scores.

s0j ¼
X4

k¼1

wkðsjk � minðskÞÞ=ðmaxðskÞ � minðskÞÞ

3.5 Scatterplot selection and dashboard generation

After calculating the scores for each dimensionality reduction (DR) method, our technique ranks the
scatterplots according to their respective scores within each predefined weight. Given the extensive number
of scatterplots generated from various DR methods and parameters, it becomes impractical to display all on
a single screen. Consequently, we prioritize the selection of scatterplots that achieve the highest scores for
presentation. Our technique creates the dashboard which is separated into the number of weights. Scat-
terplots are organized according to the highest score within each weight category, with those achieving
higher scores positioned at the top. Therefore, users can quickly identify the most effective scatterplots and
DR methods for a given dataset at a glance.

4 Case study and result

This section introduces the example results applying the technique presented in Sect. 3. The initial dataset
analyzed in this study is the Amazon Review Data, for which we provide a detailed discussion of the scoring
and visualization outcomes. To demonstrate the versatility of our proposed technique beyond text data and
include other forms of multidimensional data, we briefly present the results applied to music feature data as
a second example.

4.1 Commonly applied methods to the two cases

In our examples, we apply the same DR methods, parameters, and scoring weights. The explanation of these
common conditions precedes the presentation of data and results.

4.1.1 Employed DR methods

In our approach, we applied a range of DR techniques with various parameters, as shown in Table 2. We
adjusted parameters for PCA, MDS, LDA, t-SNE, and UMAP, and notably for t-SNE and UMAP, we
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experimented with different combinations of parameters in a round-robin manner. This resulted in the
creation of 72 scatterplots, showcasing the diverse outcomes of these DR techniques.

Furthermore, integrating multiple DR techniques often enhances the results. During our preliminary
experiment, we employed a round-robin to test various combinations of DR methods and identified that
linear method and nonlinear method combinations tend to provide superior results. The first step in the first
DR is to decide how many dimensions to reduce to. We calculated the Cumulative Contribution Rate using
PCA, which revealed that reducing the data to 83 dimensions accounts for 80% of the explained variance, 35
dimensions for 60%, and 22 dimensions for 50%. Our pre-experiment indicated that reducing the data to 22
dimensions using the first DR method, followed by the application of a second DR method, produced the
most effective visualization. Consequently, this paper will focus exclusively on those findings.

4.1.2 Weights of scores and dashboard arrangement

In our study, we define three types of weights for evaluating scatterplots as summarized in Table 3. Weight 1
aims to highlight scatterplots with clear clusters with distinguishable classes, indicating that the reduced
dimensions preserve the original characteristics of the data. Several DRs tend to distort the actual distance to
emphasize features or clusters instead of preserving the global relation of points. Weight 2 selects scat-
terplots that maintain the original distances between data points, using metrics for continuity and conser-
vation of distance to ensure spatial relationships are preserved. Weight 3 offers a balanced approach,
averaging scores across various metrics to select well-rounded scatterplots. These weights are adaptable and
should be modified based on the specific goals of each visualization task. In this study, we layouted the each
weighted scatterplot on the dashboard horizontally. The correlation between the dashboard’s arrangement
and the score ranking is detailed in Fig. 2.

4.2 Case study 1: Amazon review data

4.2.1 Dataset

In the initial case study presented in this paper, we applied the Amazon Review Data (2018) (Ni 2018),
specifically selecting from ‘‘Small subsets for experimentation.’’ Here, we limited our analysis to a total of
2000 records, owing to the substantial size of the dataset, which renders direct visualization on scatterplots
impractical. The applied records consist of each 200 records from the following 10 categories:

1. Gift Cards

2. All Beauty

3. Grocery and Gourmet Food

4. Amazon Fashion

5. Arts, Crafts, and Sewing

6. Industrial and Scientific

7. Automotive

Table 2 The DR and parameters applied in our cases

DR Method Parameter Range

PCA svd_solver ‘‘auto,’’ ‘‘full,’’ ‘‘arpack,’’ ‘‘randomized’’ (default = ‘‘auto’’)
MDS eps 1e-15 *1.0 (default = 1e-3)
LDA solver ‘‘svd,’’ ‘‘eigen’’ (default = ‘‘svd’’)
t-SNE perplexity 10 *50 (default = 30)
t-SNE early_exaggeration 10 *50 (default = 12)
UMAP n_neighbors 10 *50 (default = 15)
UMAP min_dist 0.0 *0.99 (default = 0.1)
ICA As default None
SVD As default None
KPCA As default None
PCA and t-SNE As default None
PCA and UMAP As default None
MDS and t-SNE As default None
MDS and UMAP As default None
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8. Cell Phones and Accessories

9. Digital Music
10. CDs and Vinyl

We extracted the review text data from the original JSON format and then subsequently transformed them
into 767-dimensional vectors through SimCSE (Gao 2021) and saved in CSV format. Here, each record is
associated with a product category name. The specific model utilized for this transformation was
‘‘princeton-nlp/sup-simcse-bert-base-uncased.’’ Before settling on SimCSE, we also explored the use of the
doc2vec model. However, the comparative analysis showed that SimCSE provided superior visualization
outcomes. Thus, this paper focuses only on the results using SimCSE.

4.2.2 Evaluation score and visualization result

According to scoring by the first weight (Sect. 4.1.2), the high-scoring scatterplots were predominantly
generated using UMAP with small min_dist, as detailed in Table 4. Conversely, scatterplots derived from
MDS and several linear DR techniques were found to achieve lower scores, as evidenced by the data
presented. Figure 3 clearly illustrates the differences between the high- and low-score scatterplots. The
high-score scatterplots exhibit clusters, a hallmark of effective DR methods. This is particularly charac-
teristic of UMAP, which is designed to preserve the relative proximity of data points from high-dimensional
space in the reduced low-dimensional space, ensuring that points close in the original space remain close,

Table 3 The weight applied to our cases

Name Separability of Clusters Separability of Class Continuity of Class Conservation of Points Distance

Weight 1 0.7 0.3 0.0 0.0
Weight 2 0.0 0.0 0.5 0.5
Weight 3 0.25 0.25 0.25 0.25

Fig. 2 Dashboard layout to show only selected scatterplots
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and those far apart continue to be distant in the transformed space. Conversely, the scatterplots that received
lower scores failed to form clusters even though exhibiting some degree of class separability. This indicates
that while these methods may differentiate between different classes to certain subregions, they do not
effectively group similar data points into cohesive clusters in the reduced-dimensional space.

Table 5 demonstrates the DR methods that achieved the highest and lowest scores, respectively, using
Weight 2. Furthermore, Fig. 4 illustrates the correlation between colors and product categories. We applied
DR technique to visualize the category names while setting the order number to the categories. Specifically,
MDS (Fig. 5) arranged categories so that those with intuitive similarities were positioned in proximity to
one another. The order of these categories is provided in Sect. 4.2.1.

Particularly, MDS and some of UMAP and t-SNE emerged as superior in preserving the distances among
data points. This preservation helps us understand the global relation in the dataset, enabling an accurate
interpretation of the spatial distribution of clusters and individual points. Fundamentally, MDS achieved
high scores in metrics assessing the conservation of distance between pairs of points, while UMAP with

Table 4 DR methods which have the highest and lowest scores with Weight 1

Rank DR name Parameters Score

1 UMAP n_neighbors = 40 min_dist = 0.0 0.79969
2 UMAP n_neighbors = 10 min_dist = 0.0 0.59000
3 UMAP n_neighbors = 20 min_dist = 0.0 0.58845
4 UMAP n_neighbors = 30 min_dist = 0.0 0.58715
5 PCA*UMAP default 0.47821
68 MDS eps = 1e-15 0.05036
69 MDS eps = 1e-10 0.04915
70 MDS eps = 1e-5 0.04656
71 SVD default 0.03668
72 MDS eps = 1.0 0.00394

Fig. 3 Scatterplots evaluated as the highest and lowest scores with Weight 1
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Fig. 4 Colors correspond to product categories

Fig. 5 Similar categories are arranged close

Table 5 DR methods which have the highest and lowest scores with Weight 2

rank DR name Parameters Score

1 MDS eps = 1e-5 0.84883
2 MDS eps = 1e-15 0.82617
3 MDS eps = 1e-10 0.81123
4 t-SNE perplexity = 50 early_exaggeration = 20 0.63056
5 UMAP n_neighbors = 50 min_dist = 0.6 0.61857
68 MDS*UMAP default 0.21700
69 UMAP n_neighbors = 10 min_dist = 0.99 0.20436
70 t-SNE perplexity = 40 early_exaggeration = 30 0.20235
71 LDA solver = ‘‘svd’’ 0.19767
72 LDA solver = ‘‘eigen’’ 0.19767
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min_dist = 0.4 to 0.6 performed well in metrics of continuity of classes. This suggests that MDS maintains
the spatial relationships accurately, and certain outcomes of UMAP and t-SNE are adept at capturing and
interpreting the relationships among product categories derived from review texts. For instance, it is
remarkable that ‘‘Amazon Fashion’’ and ‘‘All Beauty,’’ ‘‘Digital Music,’’ and ‘‘CDs and Vinyl’’ are located
closely. Conversely, DR methods that scored lower on this weight, especially LDA, appeared to signifi-
cantly alter the structure of the dataset to accentuate clustering, potentially at the expense of distorting the
true distances between points. While considering with the outcomes of Weight 1, this observation indicates a
fundamental trade-off in the application of DR techniques. This trade-off highlights the importance of
selecting DR methods that align with the specific objectives of the analysis (Fig. 6).

In the evaluation applying Weight 3, as shown in Table 6 and Fig. 7, UMAP prominently features in
achieving balanced results, demonstrating both effective clustering and preservation of point relationships.
Results from t-SNE are scattered in the ranking. Basically, they have high scores for class separability and
low scores for cluster separability and conservation of distance. The class continuity seems to vary greatly
depending on the parameters. Moreover, SVD and MDS particularly with excessively large eps parameters
resulted in the generation of scatterplots that did not offer significant insights or value for observation. This
observation concludes the importance of selecting appropriate parameters and techniques based on the
specific requirements and characteristics of the dataset to ensure the production of meaningful and infor-
mative visual representations.

The comprehensive analysis across the three distinct weighting schemes, from Weight 1 to Weight 3,
illustrates that the effectiveness of visualization varies significantly based on the objectives, DR techniques,
and parameters. In other words, we can obtain deeper insights and understanding of the data by examining a
wide range of ‘‘effective’’ visualizations. This is the reason why we developed a dashboard (shown in
Fig. 8) to showcase the best visualizations for a comprehensive and comparative analysis of the data.

Fig. 6 Scatterplots evaluated as the highest and lowest scores with Weight 2
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4.3 Case study 2: music features data

4.3.1 Dataset

In this example, we apply a dataset comprising 1,315 Japanese hit songs released between 1986 and 2018.
The features of each song were extracted using RP extract (Wien 2015), consisting of dimensions 1,440
dimensions of RP, 60 dimensions of RH, and 168 dimensions of SSD. For the application example, we
assigned the release decades of the songs as categories. Based on the criteria illustrated in Fig. 9, the release
years of the songs were classified into six categories, with each category being assigned a unique color.

4.3.2 Evaluation score and visualization result

In a comprehensive view, it becomes apparent that the optimal DR method selected for case 2 (shown in
Fig. 10) differs significantly from that chosen for case 1. As detailed in Table 7, LDA, which was not
prominent in the rankings for case 1, achieves the highest score in case 2, with the resulting scatterplot
exhibiting clear and distinguishable clusters. Especially, when compared scores to UMAP with smaller

Table 6 DRs which have the highest and lowest scores with Weight 3

Rank DR name Parameters Score

1 UMAP n_neighbors = 40 min_dist = 0.0 0.59365
2 UMAP n_neighbors = 50 min_dist = 0.0 0.55819
3 UMAP n_neighbors = 50 min_dist = 0.6 0.51560
4 UMAP n_neighbors = 20 min_dist = 0.0 0.49730
5 UMAP n_neighbors = 20 min_dist = 0.2 0.49521
68 UMAP n_neighbors = 10 min_dist = 0.99 0.28875
69 t-SNE perplexity = 50 early_exaggeration = 30 0.27910
70 t-SNE perplexity = 40 early_exaggeration = 30 0.26674
71 SVD default 0.21018
72 MDS eps = 1.0 0.11266

Fig. 7 Scatterplots evaluated as the highest and lowest scores with Weight 3
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min_dist values ranking in second place and below, it indicates that LDA was uniquely effective in
generating well-defined clusters for this dataset. On the other hand, several UMAP instances also scored
low, a trend not observed in case 1. This indicates that UMAP was unable to produce distinct clusters in case
2.

In the evaluation applying Weight 2 (shown in Table 8), MDS and PCA got the highest scores. This
indicates their superior capability to preserve the actual distances and continuity inherent in the original
data. Intriguingly, LDA scored the lowest with Weight 2. This result provides a compelling insight: While
LDA excels in forming distinct clusters, it does not accurately reflect the true distances between data points.

Fig. 8 Visualization dashboard shows the selected scatterplots

Fig. 9 Colors assigned to the year in case study 2

Table 7 DR methods which have top five and worst five scores with Weight 1

rank DR name Parameters Score

1 LDA solver = svd 1.0000
2 UMAP n_neighbors = 10 min_dist = 0.0 0.38420
3 UMAP n_neighbors = 30 min_dist = 0.0 0.36984
4 UMAP n_neighbors = 40 min_dist = 0.0 0.35892
5 UMAP n_neighbors = 20 min_dist = 0.0 0.34876
68 UMAP n_neighbors = 10 min_dist = 0.4 0.15754
69 UMAP n_neighbors = 10 min_dist = 0.99 0.15692
70 t-SNE n_neighbors = 40 min_dist = 0.99 0.15529
71 ICA default 0.15289
72 MDS eps = 1.0 0.13465
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Table 8 DR methods which have top five and worst five scores with Weight 2

rank DR name Parameters Score

1 MDS eps = 1e-10 0.82142
2 MDS eps = 1e-15 0.81765
3 MDS eps = 1e-5 0.81615
4 PCA svd_solver = auto 0.78959
5 PCA svd_solver = randomized 0.78959
68 t-SNE perplexity = 20 early_exaggeration = 40 0.32528
69 t-SNE perplexity = 10 early_exaggeration = 50 0.31526
70 t-SNE perplexity = 10 early_exaggeration = 10 0.31231
71 t-SNE perplexity = 30 early_exaggeration = 30 0.29424
72 LDA solver = svd 0.21428

Table 9 DR methods which have top five and worst five scores with Weight 3

Rank DR name Parameters Score

1 LDA solver = svd 0.60714
2 MDS eps = 1e-10 0.55833
3 MDS eps = 1e-5 0.55204
4 MDS eps = 1e-15 0.53243
5 SVD default 0.52898
68 t-SNE perplexity = 10 early_exaggeration = 10 0.27613
69 t-SNE perplexity = 40 early_exaggeration = 50 0.25986
70 t-SNE perplexity = 30 early_exaggeration = 30 0.25191
71 t-SNE perplexity = 20 early_exaggeration = 40 0.23382
72 t-SNE perplexity = 10 early_exaggeration = 50 0.22099

Fig. 10 Visualization dashboard shows the selected scatterplots in case 2
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This suggests that LDA may compromise on distance accuracy to enhance the visibility of distinct char-
acteristics, thereby distorting the spatial relationships to achieve clearer cluster differentiation.

With Weight 3 (shown in Table 9), LDA and MDS achieved high scores, attributed to the reasons
previously mentioned. Conversely, t-SNE shows the poorest performance, primarily due to failure in
forming clusters and its inability to preserve the relations among points.

4.4 Discussion

Through the comparison of the presented two case studies, it is evident that the optimal DR technique varies
significantly across different datasets. The comparison reveals both commonalities and differences in the
results of various DR as follows:

• UMAP with small min_dist consistently performs well in generating clusters across both datasets.
• Linear DR methods, such as MDS and PCA, accurately preserve the original distances between data

points in both cases.
• LDA excels in creating well-separated class clusters within the music data, yet produces class mixed

clusters when applied to review data.
• t-SNE is effective under certain parameter settings for review data, but it does not work for music feature

data
• While several DR methods generate clusters effectively in the review data, only LDA manages to do so

for the music features data.

DR techniques are underpinned by their unique algorithms, which inherently influence its performance, as
evidenced by the characteristics observed in the above commonalities. Here, these cases serve as a clear
illustration of the principle that the suitability of a DR can vary greatly depending on the specific
characteristics in the data. It highlights the importance of choosing the preferable techniques to effectively
reveal the desired features in a dataset.

5 Conclusion and future work

This paper proposed the technique for selecting DR methods for multidimensional data, based on scoring
generated scatterplots. This technique automatically computes scores using various weighted metrics for
scatterplots produced by applying different DR methods and parameters. We explored 72 DR patterns in this
study; here, the potential combinations of DR methods, parameters, DR combinations, the dimensionality in
the initial DR phase when combining methods, and class assignments, suggest an expansive number of
possibilities. Efficient scatterplot selection techniques are therefore required. We presented case studies
involving e-commerce review data and music feature data, demonstrating that the optimal DR method varies
according to the characteristics of the dataset.

As future work, we would like to evaluate the weighting of each metric used in scatterplot scoring. In our
case studies, the selection of weights was based on the hypotheses and subjective of the authors. We would like
to develop methods to determine optimal weights for a more effective selection of insightful scatterplots.
Exploration of alternative metrics for scatterplot evaluation would be another issue. In our dashboard, while we
comprehensively list scatterplots with the highest scores, the inclusion of similar scatterplots could be avoided.
Since the dashboard should provide the selected DR methods, parameters, and characteristics of data, thus
displaying every similar scatterplot may not be necessary. Further scatterplot selection techniques such as those
proposed by Itoh et al. (2023) could be utilized to refine the redundant scatterplot selection results. Lastly, we
would like to apply this application to other types of datasets and verify their effectiveness.

References

Agis D, Pozo F (2019) A frequency-based approach for the detection and classification of structural changes using t-sne.
Sensors 19(23):5097

Anowar F, Sadaoui S, Selim B (2021) Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca,
lda, mds, svd, lle, isomap, le, ica, t-sne). Comput Sci Rev 40:100378

220 K. Okada and T. Itoh



Aupetit M, Sedlmair M (2016) Sepme: 2002 new visual separation measures. In: 2016 IEEE pacific visualization symposium
(PacificVis), pp. 1–8. IEEE

Ayesha S, Hanif MK, Talib R (2020) Overview and comparative study of dimensionality reduction techniques for high
dimensional data. Inf Fus 59:44–58

Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat Theory Methods 3(1):1–27
Dang TN, Wilkinson L (2014) Scagexplorer: Exploring scatterplots by their scagnostics. In: 2014 IEEE Pacific visualization

symposium, pp 73–80. IEEE
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