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AbstractÐOne of the most effective techniques for developing efficient isosurfacing algorithms is the reduction of visits to

nonisosurface cells. Recent algorithms have drastically reduced the unnecessary cost of visiting nonisosurface cells. The experimental

results show almost optimal performance in their isosurfacing processes. However, most of them have a bottleneck in that they require

more than O�n� computation time for their preprocessing, where n denotes the total number of cells. In this paper, we propose an

efficient isosurfacing technique, which can be applied to unstructured as well as structured volumes and which does not require more

than O�n� computation time for its preprocessing. A preprocessing step generates an extrema skeleton, which consists of cells and

connects all extremum points, by the volume thinning algorithm. All disjoint parts of every isosurface intersect at least one cell in the

extrema skeleton. Our implementation generates isosurfaces by searching for isosurface cells in the extrema skeleton and then

recursively visiting their adjacent isosurface cells, while it skips most of the nonisosurface cells. The computation time of the

preprocessing is estimated as O�n�. The computation time of the isosurfacing process is estimated as O�n1=3m� k�, where k denotes

the number of isosurface cells and m denotes the number of extremum points since the number of cells in an extrema skeleton is

estimated as O�n1=3m�.

Index TermsÐIsosurface, extremum points, volume thinning, extrema skeleton, lattice classification.

æ

1 INTRODUCTION

VISUALIZING isosurfaces is one of the most effective
techniques for understanding scalar fields, such as

the results of three-dimensional numerical simulations and
the results of three-dimensional measurements in the
medical field. An isosurface is usually approximated as a
set of triangular facets [1], [2] and displayed as a set of
edges of triangles or as a set of filled triangles.

In the numerical simulation field, visualization tools that
support a function for the continuous generation of
isosurfaces with changing scalar values are used to under-
stand the distribution of scalar fields. When a volume is
huge and contains an enormous number of cells, the cost of
generating an isosurface may be high. It may even prevent
the user from understanding the distribution of the scalar
field because a long time is necessary to generate an
isosurface from a huge volume of data. Fast isosurfacing
methods are therefore needed to facilitate understanding
scalar fields.

In a basic isosurfacing procedure, all cells are visited and
those intersected by an isosurface, so-called isosurface cells,

are extracted. Polygons inside the isosurface cells are then
generated and, finally, the positions and normal vectors of
the polygon-vertices are calculated. Some fast isosurfacing
techniques focus on the acceleration of polygonization and
the rendering processes, such as parallelization [3], graphics
acceleration by generation of triangular strips [4], and
geometric approximation [5]. However, it seems that the
most effective technique for developing fast isosurfacing
algorithms is the reduction of the number of visited
nonisosurface cells. In our experience, the ratio of the
number of nonisosurface cells to the number of isosurface
cells is usually large.

Actually, many techniques have been proposed for
reducing the number of nonisosurface cells that are visited.
Algorithms that classify or sort cells according to their
scalar values [6], [7], [8] have been previously proposed, but
the number of cells visited in these algorithms is still
estimated as O�n�, where n is the total number of cells.
Algorithms that classify cells by using space-subdivision
[9], [10] have also been proposed, but they are difficult to
apply to unstructured volumes.

Recently, many efficient isosurfacing algorithms have
been developed that can be applied to unstructured
volumes and whose computation time for isosurfacing
processes is much less than O�n�. They can be categorized
into two approaches: range-based search methods and seed
set generation methods.

The first approach uses an interval �a; b� of a scalar range,
where a is a cell's minimum value and b is its maximum
value. The cell is intersected by an isosurface if the interval
satisfies a � C and C � b, where C is a constant value of the
isosurface, the so-called isovalue. Such cells are efficiently
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extracted by using traditional searching algorithms [11],
[12], [13]. Livnat et al. proposed an algorithm using a
K-d tree method [11], whose isosurfacing cost is
estimated as O�n1=2 � k�, where k is the number of
isosurface cells. Shen et al. proposed an algorithm using
a lattice classification [12], whose isosurfacing cost is
estimated as O�log n

L� n1=2

L � k�, where L is a user-specified
parameter. Cignoni et al. proposed an algorithm using an
interval tree [13], whose isosurfacing cost is estimated as
O�logn� k�. These can be applied to unstructured volumes
and are more efficient than the previously mentioned
methods since the numbers of cells visited in the algorithms
are much less than O�n�. However, these algorithms involve
costs of over O�n� for constructing substructures in
preprocessing since they use sorting processes. The lattice
classification can be implemented without the sorting
process; however, it is desirable to include the sorting
process in order to make the ranges of classifications vary in
order to have a similar number of cells in each lattice.

The second approach generates small groups of cells, the
so-called seed set, which includes at least one isosurface cell
for every isosurface [14], [15], [16], [17]. This approach uses
isosurface propagation algorithms, which recursively visit
adjacent isosurface cells [18], [19], [20], starting from
isosurface cells extracted from the seed set. Here, an
adjacent cell means a cell that shares a face with the visited
cell. When an isosurface consists of multiple disjoint parts,
the approach extracts isosurface cells in all disjoint parts of
the isosurface from the seed set. Two of the present authors,
Itoh and Koyamada, reported a method that uses an
extrema graph [14], [15]. An extrema graph connects
extremum points in a volume by means of arcs and cells
through which the arcs pass are registered. Bajaj et al.
reported a method for generating smaller groups of cells,
which sweeps cells in a grid space and removes many cells
whose ranges of values are entirely shared by their adjacent
cells [16]. The approaches described in these papers do not
guarantee that cells intersected by all parts of an isosurface
separated by through-holes of an unstructured volume will
always be extracted from the seed sets. So as not to miss the
intersected cells of all disjoint parts of an isosurface, the
extrema graph method also traverses boundary cells.
Kreveld et al. reported a method for generating a contour
tree [17], which connects extremum and saddle points. The
method solves the above-mentioned problem, but it
requires over O�n� computation time for generating the
contour tree.

These two approaches, whose complexities are much
smaller than O�n� [11], [12], [13], [14], [15], [16], [17], have
drastically reduced the unnecessary cost of visiting non-
isosurface cells. For example, Table 6 in [14] shows that the
cost of searching for isosurface cells in the extrema graph
method is slight. These experimental results show that the
differences in computation times of isosurfacing processes
between such techniques seem relatively small. We should
note another bottleneck of these approaches is that most of
these fast isosurfacing methods require over O�n� complex-
ities for preprocessing.

In this paper, we propose an efficient isosurfacing
technique which can be applied to unstructured volumes

as well as structured volumes and does not require more
than O�n� computation time for its preprocessing. The
technique generates an extrema skeleton, which is an
extension of an extrema graph [14], as a small seed set.
An extrema skeleton consists of cells and connects all
extremum points like an extrema graph. The technique
generates an extrema skeleton by the volume thinning
method [15], which is an extension of the thinning method
used for image recognition, in the preprocessing. It then
extracts isosurface cells from the extrema skeleton and
generates an isosurface by the propagation method [18],
[19], [20].

This technique has the following characteristics:

. Though the complexity of the preprocessing in most
of the above-mentioned fast isosurfacing methods is
more than O�n�, in this technique, it is estimated as
O�n� since both the extremum point extraction
process and the volume thinning process visit most
cells constant times.

. The number of cells in an extrema skeleton is
estimated as O�n1=3m�, where m denotes the
number of extremum points. The computation
time of the isosurfacing process is therefore
estimated as O�n1=3m� k�, where k denotes the
number of isosurface cells. The process can be
accelerated by the combination with the range-
based search approaches, such as the lattice
classification method [12].

. The extrema skeleton can be used to understand the
scalar topology [21] of volumes since it connects the
critical points of the volume and preserves the
topology of the volume.

The original volume thinning algorithm was reported in
[15]; in this paper, we also describe the implementation for
hexahedral cells and the face-connected to node-connected
conversion process for the reduction of the number of seed
cells. We also show more detailed experimental results.

2 RELATED WORKS

2.1 Isosurface Propagation

Isosurface propagation algorithms generate isosurfaces by
recursively visiting adjacent isosurface cells, as shown in
Fig. 1. In a typical algorithm [20], some isosurface cells are
first inserted into a FIFO queue. Cells are then extracted
from the FIFO one by one and polygons are generated
inside the cell by the Marching Cubes method or some other
polygonization method. At the same time, adjacent isosur-
face cells of the extracted cells are inserted into the FIFO.
These cells are marked so that they are not inserted twice.
By repeating the above processes, an isosurface is finally
generated when the FIFO becomes empty.

The method needs additional computation time in the
preprocessing step for constructing the adjacency of cells. It
also needs additional memory for preserving the adjacency
information. It seems that the method is memory-consum-
ing; however, Kreveld et al. [17] describe that it is not worse
than range-based search methods [11], [12], [13] since the
methods may require more memory for their auxiliary
substructures used while searching for isosurface cells.
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2.2 Extrema Graph Method

The extrema graph method [14] is an algorithm for
extracting isosurface cells in all disjoint parts of an isosur-
face. It uses the following rules governing the relationship
between an isosurface and a volume:

Definition. An extremum point is a node whose scalar value is
higher (or lower) than those of all adjacent nodes that are
connected to the node by cell-edges.

Rules. If there is a closed isosurface, then extremum points exist
both inside and outside it. If there is an open isosurface, then it
intersects the boundary of the volume.

According to the above rules, cells intersected by a
closed isosurface are found by traversing a graph that is
generated by connecting extremum points. Cells intersected
by an open isosurface are found on the boundary. In the
preprocessing part of the method, extremum points in a
volume are first extracted. A pair of close extremum points
is then selected and adjacent cells are traversed in order,
starting from one of the selected extremum points, continu-
ing toward the other selected point. If the traversal is
successfully completed, an arc of the extrema graph is
allocated for the selected two extremum points and the
visited cells are registered in a cell list for the arc. This
process is repeated until all extremum points have been
connected to form a graph. At the same time, boundary cells
have been registered in a list and sorted according to the
minimum and maximum values of their nodes. Fig. 2 shows
an example of cells registered in the above cell lists.

Given an isovalue, cells in the extrema graph and in
the sorted boundary cell lists are visited. The method
extracts isosurface cells in all disjoint parts of an isosur-
face and the propagation algorithm generates all the parts
of the isosurface.

The computation time of preprocessing of the
e x t r e m a g r a p h m e t h o d i s e s t i m a t e d a s
O�n� �O�m2 logm� n1=3m� �O�n2=3 logn2=3�, where m de-
notes the number of extremum points. In our experiments,
the cost is shown to be linear in many cases. However, the

process may be costly when a volume is very noisy and

therefore has an enormous number of extremum points.

The computation time for the isosurfacing process of the

extrema graph method is estimated as O�n2=3 � n1=3m� k�,
where k is the number of isosurface cells. The details of

these computation times are described in Appendix A.
Here, this paper estimates the complexity of algorithms

with the following assumptions:

. The number of cells on the boundary of a volume is
estimated as O�n2=3�,

. The maximum degree of any node is bounded by a
constant, and

. The number of faces, edges, and nodes are all O�n�.
2.3 Contour Tree Method

Unstructured volumes may have through-holes or voids [22].

In this paper, a through-hole is defined as a topological

feature that causes a genus of a boundary. A void is defined

as an empty space enclosed by a disjoint part of the

boundary of a volume.
An isosurface separates a volume into several subdo-

mains. There are extremum points in all of the subdomains

and an extrema graph therefore always connects all of the

subdomains. An isosurface may also consist of several

disjoint parts. If two adjacent subdomains share only one

part of an isosurface, an arc of an extrema graph necessarily

intersects the part. On the other hand, it is possible that the

two subdomains share two or more disjoint parts of an

isosurface if a volume has through-holes. In this case, arcs

of the extrema graph do not always intersect all the parts of

the isosurface. This means that an extrema graph may not

find the intersection with several parts of an isosurface

when a volume has through-holes. In other words, the

extrema graph needs to preserve the topology of through-
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Fig. 1. Isosurface propagation.

Fig. 2. Extrema graph and boundary cell lists.



holes so that it intersects with all disjoint parts of every
isosurfaces.

Fig. 3a shows an example of a scalar field of a volume
that contains the through-hole. An isosurface is separated
by a through-hole and a volume is separated into two
subdomains. Both parts of the isosurface touch the two
subdomains. In such cases, an extrema graph does not
necessarily have intersections with all parts of the separated
isosurface, as shown in Fig. 3b. In [14], cells on the
boundary are visited so as not to miss isosurface cells, as
shown in Fig. 3c.

Kreveld et al. proposed a contour tree method [17] which
connects not only extremum points but also saddle points
by using a tree. Here, a saddle point is defined as a node
that the gradient vectors of the scalar values split or merge
there. Kreveld et al. described what happens around saddle
points in [17]. The method generates arcs of the tree by
traversing cells. The traversal starts at local maximum
points, merges or splits at saddle points, and finally
terminates at local minimum points. The seed sets are then
generated by traversing cells along the contour tree and
selecting the minimum number of cells while the selected
cells do not miss scalar ranges across the tree. The method
requires over O�n� computation time for the construction of
the contour tree since it uses heap operations. However, a
much smaller seed set than that of the extrema graph
method can be obtained by using the contour tree since this
preserves the topology of a volume and boundary cell lists
are not therefore necessary, as shown in Fig. 3d.

3 ALGORITHM OVERVIEW

3.1 Overview of Preprocessing and Isosurfacing
Process

This paper proposes an efficient isosurfacing technique that
drastically reduces visit of nonisosurface cells and does not
require more than O�n�computation time for preprocessing.
Fig. 4 shows the pseudocode of the technique.

During the preprocessing, our technique first extracts
extremum points by using an algorithm shown in [14]. It
then generates an extrema skeleton by the volume thinning
method. An extrema skeleton is a set of cells that connects
all extremum points while it intersects all disjoint parts of
every isosurface. The preprocessing is performed only once
and the extrema skeleton can be used until the visualization
application is terminated.

Given an isovalue by a user or automatically, the
technique extracts isosurface cells by traversing the extrema
skeleton and then generates an isosurface by the propaga-
tion method. The computation time of the isosurfacing
process is estimated as O�n1=3m� k�, where k denotes the
number of isosurface cells and m denotes the number of
extremum points. The process can be accelerated by the
combination with the range-based search approaches.

We have implemented the technique and confirmed that
it normally generated isosurfaces in our experimental tests
described in Section 5.

3.2 Overview of the Volume Thinning Method

We have already given an overview of the volume thinning
method and its implementation for tetrahedral cells in [15].
In this paper, we also describe the implementation for
hexahedral cells and a new implementation for reducing
seed cells in a process for converting an extremum skeleton
from face-connected to node-connected.

The volume thinning method is an extension of the
previously reported image thinning method (see
Appendix B). While the image thinning method generates
a skeleton of a painted area of an image consists of pixels,
the volume thinning method generates an extrema
skeleton of a volume that consists of cells. The extrema
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Fig. 3. Topology of an extrema graph and an isosurface. (a) A scalar
field and extremum points. (b) An extrema graph may miss founding
isosurface cells. (c) Isosurface cells are found on the boundary. (d)
Boundary cells are not necessary if there is a cycle around a through-
hole.

Fig. 4. Pseudocode of the whole implementation described in this paper.



skeleton connects extremum points like an extrema graph
[14] while it preserves the topology of the volume like a
contour tree [17]. Our technique does not need to traverse
boundary cells to extract isosurface cells and seed sets
generated by the volume thinning method are therefore
smaller than those in the extrema graph method.

Our volume thinning method initially assumes that a
seed set of a volume contains all cells in the volume. It then
marks each cell which touches an extremum point, as
shown in Fig. 5a. The marked cells will never be eliminated
from the seed set during the volume thinning process. The
method then visits unmarked cells on the boundary of the
non-eliminated cells, and eliminates many of them from the
seed set, as shown in Fig. 5b. Finally, the seed set forms a
one-cell-wide skeleton while the cells in the skeleton
preserve the connectivity of the marked cells. The visit
procedure is similar to the image thinning algorithm, which
visits pixels at the boundary of a painted area and
eliminates many of them until a one-pixel-wide skeleton
is generated.

The shape of the skeleton and the number of cells in it
strongly depend on the order of visiting cells. However, we
do not consider optimizing the order because the optimiza-
tion causes a more complicated implementation and only
slightly reduces of the number of seed cells.

The preprocessing part of our technique consists of the
extremum point extraction process and the volume thinning
process. The extremum point extraction process visits every
cell once and traverses adjacent cells to compare the scalar
values between adjacent nodes, as described in [14]. While
the number of adjacent nodes of a node is constant
according to an assumption described in Section 2.2, the
computation time of the extrema point extraction process is
estimated as O�n�. The computation time of the volume
thinning process is also estimated as O�n� since it visits each
cell constant times. The computation time of the preproces-
sing is therefore estimated as O�n�.

4 IMPLEMENTATION OF THE VOLUME THINNING

METHOD

4.1 Data Structures for the Volume Thinning
Method

Our study assumes that all nodes are located at the vertices
of cells and that a scalar value at an arbitrary position is
calculated by linear interpolation. It also assumes that a
volume has lists of the following data structures:

4.1.1 Cell

This paper describes the classifications of cells as Cn
(n � ÿ1; 0; 1; 2; 3; 4 f o r t e t r a h e d r a l c e l l s , n �
ÿ1; 0; 1; 2; 3; 4; 5; 6 for hexahedral cells). The method initially
assumes that all cells are in a seed set and classifies them
according to the number of adjacent cells. Cells that touch
extremum points are classified as Cÿ1 in the initialization
stage and they are never updated. The method then
eliminates many cells from the seed set. The classifications
of the eliminated cells are changed to C0. During the
volume thinning process, the classifications of cells are
dynamically changed according to the number of adjacent
noneliminated (� non-C0) cells.We suppose that a tetrahe-
dral cell ei has the following variables:

. pointers to its four nodes, �ni;1; ni;2; ni;3; ni;4�,

. pointers to its adjacent cells, �ei;1; ei;2; ei;3; ei;4�, and

. a classification value, ci, that represents the number
of adjacent noneliminated cells.

In the case of hexahedral cells, the number of nodes is 8
and the number of adjacent cells is 6.

4.1.2 Boundary Face

In the initialization stage, a boundary face fi is defined as a
face of a cell that is not shared by another cell. During the
volume thinning process, fi is defined as a face of a cell that
is not shared by another noneliminated cell. The process
yields new boundary faces when it eliminates cells from a
seed set one by one.

This paper describes the boundary ID as Gi

(i � ÿ1; 0; 1; . . .m), where m denotes the number of voids.
In the initialization stage, G0 is assigned to the node and
boundary faces on the outer boundary of a volume, and Gi
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Fig. 5. Overview of the volume thinning method. (a) Cells which touch
extremum points are marked. (b) Many cells are eliminated out of a seed
set. (c) An extrema skeleton with a bubble-like layer around a void. (d)
An extrema skeleton after removing the bubble-like layer.



(i > 0) is assigned to the node and boundary faces on the
void boundary. Gÿ1 is not assigned to boundary faces but to
nodes which are not on the boundary of noneliminated
cells.

We suppose that fi has the following variables:

. a pointer to its cell, ei and

. a boundary ID, gi.

4.1.3 Node

We assume that a node ni has the following variables:

. a position value, pi,

. a scalar value, si, and

. a boundary ID, gi that ni touches.

4.1.4 Extremum Point

An extremum point xi is defined as a node whose scalar
value is larger or smaller than those of any other adjacent
nodes. It has the following variables:

. a pointer to the node, ni and

. a pointer to one of the cells, ei, that xi touches.

Our implementation extracts all extremum points by an
algorithm described in [14].

4.2 Detailed Algorithm of the Volume Thinning
Method

Fig. 6 shows the algorithm of the volume thinning method
for tetrahedral cells as a pseudocode. The algorithm for
hexahedral cells is very similar, except the consideration of
C4 and C5 cells.

The initialization stage of the volume thinning method
first classifies cells according to the number of their adjacent
cells. It then allocates FIFO queues for Cn cells that are on
the boundary of the noneliminated cells (n � 1; 2; 3, for
tetrahedral cells, and n � 1; 2; 3; 4; 5, for hexahedral cells)
and inserts such cells into the FIFOs. At that time, C4

tetrahedral cells or C6 hexahedral cells are not inserted into
FIFOs, but most of them will be inserted during the volume
thinning process because their classification will be changed
when their adjacent cells are eliminated from the seed set.

At the same time, the initialization process extracts a
boundary face and assigns a boundary ID Gi. It then visits
adjacent boundary faces recursively and assigns them the
same boundary ID Gi. The process is repeated until it
assigns boundary IDs to all boundary faces. It then visits all
boundary faces again and assigns the boundary ID of the
visited faces to nodes on the faces. Finally, it assigns Gÿ1 to
all other nodes which are not on boundary faces. At that
time, many nodes are assigned Gÿ1, but most of them will
be changed during the volume thinning process because the
process eliminates many cells and faces adjacent to most of
nodes then become boundary faces.

The main loop of the volume thinning process extracts
cells from FIFOs and checks the connectivity between the
extracted cells and their adjacent cells, according to the
conditions described in Section 4.3 and 4.4. The cells are
eliminated from the seed set if the connectivity of their
adjacent cells can be preserved without them. At that time,
their classifications are changed to C0.

The image thinning method checks a pixel's connectivity

by traversing its adjacent remaining pixels through their

shared edges, as described in Appendix B. Similarly, the

volume thinning method checks a cell's connectivity by

traversing its adjacent noneliminated cells through their

shared faces. If a cell ei has two adjacent noneliminated

cells, ej and ek, the method traverses the noneliminated cells

starting from ej to ek, through the adjacency of the cells. If

the traversal arrives at ek, ei can be eliminated since the

connectivity between ej and ek can be preserved without ei.

More details about this part of the implementation are

described in Sections 4.3 and 4.4.
Suppose that a cell ei is eliminated. At that time, the

process changes the classifications of its adjacent
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Fig. 6. Pseudocode of the volume thinning method for tetrahedral cells.



noneliminated cells from Cn to Cnÿ1 if n > 0 and inserts

them into the Cnÿ1 FIFO. Here, some nodes of ei have been

assigned Gi (i > ÿ1) and others have been assigned Gÿ1

because the eliminated cell ei is the boundary cells of

noneliminated cells. At that time, the process assigns Gi to

all nodes of ei and faces of ei shared by its adjacent

noneliminated cells. The shared faces become new bound-

ary faces of noneliminated cells at that time.
In our implementation, all C1 cells are first extracted

from a FIFO. An extracted C1 cell is unconditionally

eliminated from the seed set since the connectivity of its

adjacent noneliminated cell is not changed by the elimina-

tion. When the C1 FIFO becomes empty, C2 cells are

extracted. When both C1 and C2 FIFOs become empty, C3

cells are extracted. In the case of hexahedral cells, C4 or C5

cells are similarly extracted when all FIFOs up to C3 or C4,

respectively, become empty.
When all FIFOs become empty, the noneliminated cells

form a skeleton that connects all extremum points. The

skeleton preserves the topological features of the volume,

such as through-holes and voids [22]. Cycles of cells are

generated around through-holes since the skeleton contains

the cycle of the through-holes. Bubble-like layers of cells are

generated around the voids since the skeleton retains any

disjoint boundary faces around voids, as shown in Fig. 5c.

The bubble-like layers occupy the large part of an extrema

skeleton. However, we do not need to preserve the layers

because we need only the topology of the through-holes, as

discussed in Section 2.3. As shown in Fig. 5d, our

implementation eliminates such bubble-like layers of cells

to reduce the number of cells in the extrema skeleton. The

details of this part of implementation are described in

Section 4.5.
After eliminating bubble-like layers of cells around

voids, all noneliminated cells are finally extracted as a seed

set. Here, other fast isosurfacing methods, such as k-d tree

[11], lattice classification [12], or interval tree [13], can be

applied to skip nonisosurface cells in the seed set. We apply

the lattice classification method; however, our implementa-

tion does not sort cells according to their minimum and

maximum values, so as not to exceed O�n� computation

time in the preprocessing.
When an isovalue is given by a user or automatically, our

method extracts isosurface cells from the extrema skeleton

and generates an isosurface by the propagation algorithm.

Fig. 7a shows an example of a scalar field in a volume and

Fig. 7b shows an example of an extrema skeleton. Cells in

the skeleton are classified in a span space, as shown in

Fig. 7c, and isosurface cells are efficiently extracted from the

span space when an isovalue is specified. The painted cells

in Fig. 7d are an example of cells extracted from the span

space and Fig. 7e shows all the cells that have been visited

during the isosurfacing process.

4.3 Conditions for Tetrahedral Cells

In the case of volumes consisting of tetrahedral cells, C2 and

C3 cells are processed according to the following conditions.

Fig. 8 also shows the conditions.

4.3.1 Condition for C2 Cells

A C2 cell, ei, has an edge a shared by its two adjacent

noneliminated cells, ej and ek. Our method traverses

noneliminated cells sharing a through their shared faces,

starting from ej, without passing through ek at once. If the

traverse arrives at ek, the classification of ei, ci, is changed to

C0 since the connectivity between ej and ek is preserved

without ei. This also means that a is not on the boundary of

the noneliminated cells.

4.3.2 Condition for C3 Cells

A C3 cell, ei, has a node n shared by its three adjacent

noneliminated cells, ej, ek, and el. If the boundary ID of n is

Gÿ1, n is not on the boundary of the noneliminated cells. In

this case, an edge of ei shared by ej and ek is not on the

boundary of the noneliminated cells and, therefore, the
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Fig. 7. Visited cells in the isosurfacing process. (a) Scalar field in a
volume. (b) Extrema skeleton. (c) Lattice classification of cells in a
skeleton. (d) Visited cells in a skeleton. (e) All visited cells until an
isosurface is generated.

Fig. 8. Conditions for tetrahedral cells: (a) C2 cell, (b) C3 cell.



connectivity between ej and ek can be preserved without ei,
according to the condition for C2 cells. Similarly, an edge of
ei shared by ek and el, and an edge of ei shared by el and ej,
are not on the boundary of the noneliminated cells and,
therefore, the connectivity among ej, ek, and el can be
preserved without ei. In this case, the classification of ei, ci,
is changed to C0.

4.4 Conditions for Hexahedral Cells

The original volume thinning method [15] has been applied
only to tetrahedral cells, but it can also be applied to
hexahedral cells. In the case of volumes consisting of
hexahedral cells, C2, C3, C4, and C5 cells are processed
according to similar conditions. Fig. 9 also shows the
conditions.

In this process, a cell is eliminated if none of its edges
that are shared by two adjacent noneliminated cells are on
the boundary of the noneliminated cells. The condition is
similar to the condition of C2 tetrahedral cells. It is also
eliminated if none of its nodes that are shared by three
adjacent noneliminated cells are on the boundary of the
noneliminated cells. The condition is similar to the condi-
tion of C3 tetrahedral cells.

4.4.1 Condition for C2 Cells

If a C2 cell, ei, has an edge a shared by its two adjacent
noneliminated cells, ej and ek, the process traverses adjacent
cells of ei, starting from ej. If the traversal arrives at ek, a is

not on the boundary of the noneliminated cells. In this case,
the classification of ei, ci, is changed to C0. If none of the
edges of ei are shared by ej and ek, ci is not changed.

4.4.2 Condition for C3 Cells

If a C3 cell, ei, has a node n that is shared by its three
adjacent noneliminated cells, ej, ek, and el, the process
checks the boundary ID of n. If it is Gÿ1, n is not on the
boundary of noneliminated cells. In this case, ci is changed
to C0.

Or, if ei has two edges a1 and a2 shared by its two
adjacent noneliminated cells, and either a1 or a2 is not on

the boundary of the noneliminated cells, ci is changed to C0.

4.4.3 Condition for C4 Cells

If a C4 cell ei has two nodes n1 and n2, shared by its three
adjacent noneliminated cells, and either n1 or n2 is not on
the boundary of the noneliminated cells, ci is changed to C0.

4.4.4 Condition for C5 Cells

If a C5 cell, ei, has four nodes n1, n2, n3, and n4, shared by its
three adjacent noneliminated cells, and none of them are on

the boundary of the noneliminated cells, ci is changed to C0.

4.5 Elimination of Bubble-Like Layers of Cells

As mentioned in Section 4.2, bubble-like layers of cells are
generated around voids when all the FIFOs become empty,
as shown in Fig. 10a. Our implementation removes the

bubble-like layers to reduce the number of cells in the final
extrema skeletons.

Here, these layers have disjoint boundary faces, some
faces assigned the boundary ID G0 and others assigned Gn
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Fig. 9. Conditions for hexahedral cells: (a) C2 cell, (b) C3 cell, (c) C4 cell,

(d) C5 cell.

Fig. 10. Elimination of cells in bubble-like layers around voids. (a) A layer
of cells around a void. (b) Eliminate cells so that disjoint boundary faces
are connected. (c) Insert cells adjacent to the eliminated cells into FIFO.
(d) Many cells in the layer are eliminated by the volume thinning.



(n > 0). The topology of the layers is destroyed when the
two disjoint groups of boundary faces are connected. Our
method connects these groups of disjoint boundary faces by
eliminating several cells, like pricking a hole through the
layer, as shown in Fig. 10b. In the case of tetrahedral cells,
the method first extracts a cell, ei, in which two nodes are
assigned G0 and the other two nodes are assigned Gn. ei
should have two kinds of noneliminated adjacent cells: ej
that has at least one boundary face assigned G0 and ek that
has at least one boundary face assigned Gn. The method
then eliminates the three cells, ei, ej, and ek, to connect the
two disjoint boundaries, G0 and Gn.

At that time, the classification of ei, ej, and ek is changed
to C0. The classifications of their noneliminated adjacent
cells are then changed from Cn to Cnÿ1 and these cells are
inserted into the Cnÿ1 FIFO, as shown in Fig. 10c. The
method restarts the thinning process by extracting cells
from FIFOs and many cells in the bubble-like layer are then
eliminated from the seed set, as shown in Fig. 10d. Finally, a
smaller skeleton has been finally generated while cycles of
cells around through-holes are preserved.

In the case of hexahedral cells, layers of cells around voids
can also be eliminated by similarly pricking the layers.

4.6 Face-Connected to Node-Connected
Conversion

When the volume thinning process terminates, the
noneliminated cells, corresponds to non-C0 cells, form a
skeleton. Pairs of the seed cells share their faces; however,
this is not necessary. The extrema skeleton contains at least
one isosurface cell of every isosurface even if adjacent seed
cells only share a node. The number of seed cells can
therefore be reduced while the connectivity of extremum
points is preserved through other nodes of the seed cells.

Consider a tetrahedral seed cell ei and a cell ej adjacent
to ei. If ej has another adjacent seed cell ek and ek has nodes
shared with ei, then ej can be eliminated. If the adjacent
seed cell of ek, el, also has nodes shared with ei, then ek can
also be eliminated. Starting from seed cells that touch
extremum points, this process eliminates many seed cells.

A seed set generated by the grid-plane sweeping method
[16] looks like a node-connected extrema skeleton. Fig. 4 in
[16] shows that their seed set includes cells that touch
extremum points and many cells in the seed set are
connected by their shared nodes.

5 EXPERIMENTAL RESULTS

This section compares the experimental results of our
isosurfacing method with those of other methods. In these
experiments, the face-connected to node-connected conver-
sion process had not been implemented in the volume
thinning method. The experiments were carried out on an
IBM PowerStation RS/6000 (Model 42T). Five datasets for
unstructured volumes consisting of tetrahedral cells con-
taining the results of numerical simulations, were used.
Table 1 shows the sizes of these datasets. In Table 1:

. Nc denotes the number of tetrahedral cells.

. Ngp denotes the number of grid points.

. Nep denotes the number of extremum points.

5.1 Images of Extrema Skeletons and Isosurfaces

The extrema skeleton for Dataset no. 2 is shown in Fig. 12,
where the color of a cell represents its scalar value. Fig. 13
shows an example of generated isosurfaces. The volume
represents a human as a through-hole and a box as a void.
The through-hole starts from one foot, goes through both of
the legs, and ends up in the other foot. In the skeleton, a line
of cells passing between the legs preserves the cycle of the
through-hole.

The extrema skeleton for Dataset no. 3 is shown in Fig. 14.
Fig. 15 shows an example of isosurface generation.

The volume thinning process for generating the extrema
skeleton of the volume for Dataset no. 2 is shown in Figs. 16,
17, 18, and 19.

5.2 Experimental Results of Preprocessings

We implemented the sweeping simplices method [8] and
the lattice classification method [12] for the comparisons.
We also used the lattice classification method to classify
cells in each extrema skeleton. However, the ranges of
classifications were fixed when we applied it to an extrema
skeleton because we did not use a sorting process so as to
avoid exceeding an O�n� computation time in the pre-
processing of the volume thinning method. The number of
lattices was 100� 100 in all experiments. Our results for the
volume thinning method were also obtained without any
lattice classification.

Table 2 shows the computation times in the preproces-
sing parts of the methods. In Table 2:
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TABLE 1
Size of Datasets

Fig. 11. Image thinning.



. Tss denotes the cost of preprocessing in the sweeping
simplices method [8].

. Tlc denotes the cost of preprocessing in the lattice
classification method [12].

. Teg denotes the cost of preprocessing in the extrema
graph method [14].

. Tvt0 denotes the cost of preprocessing in the volume
thinning method without lattice classification.

. Tvt�lc denotes the cost of preprocessing in the
volume thinning method with lattice classification.

Fig. 20 shows the relationship between the number of

total cells Nc and four of the above computation times, Tss,

Tlc, Teg, and Tvt0. Tvt�lc is not shown in Fig. 20 because it is

very similar to Tvt0.
Here, we note that the computation time of the volume

thinning method is proportional to the number of cells

and smaller than the computation times required by other

methods, such as sweeping simplices or lattice classifica-

tion methods. The results show that the differences in

computation times of preprocessings are larger than the

differences in those of isosurfacing processes and, there-

fore, the complexity of preprocessing should be taken into

consideration.
We also note that the computation time of the extrema

graph method is not directly proportional to the number of

cells. The time required for Dataset no. 4 is very much

larger than for the other datasets, although there are fewer

cells than in Dataset no. 5, owing to the relatively much

larger number of extremum points. This is problematic for

users since it makes it impossible for them to know the

number of extremum points without counting them and the

cost of preprocessing is therefore not predictable. The cost

of preprocessing in the volume thinning method looks more

stable since it is almost proportional to the total number of

cells.
We also compared the preprocessing of our volume

thinning method and extrema graph method [14] in terms

of the numbers of seed cells. Table 3 shows the numbers of

seed cells in the two methods. In Table 3,
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Fig. 12. Image of an extrema skeleton in Dataset no. 2.

Fig. 13. Image of isosurfaces in Dataset 2.

Fig. 14. Image of an extrema skeleton in Dataset no. 3.

Fig. 15. Image of isosurfaces in Dataset 3.



. Nc1 is the number of seed cells in the extrema graph
method.

. Nc2 is the number of seed cells in the volume
thinning method.

The results show that the number of seed cells obtained

by volume thinning is much smaller than in the extrema

graph method. Notice that all seed cells are not always

visited to generate an isosurface. In the extrema graph

method, arcs of an extrema graph preserves the maximum

and minimum values of nodes of cells registered into cell

lists of arcs. Given an isovalue, many arcs in an extrema

graph are skipped in the isosurfacing process by comparing

the isovalue with maximum and minimum values of arcs.

Cells registered in the skipped arcs are therefore not visited.

In the volume thinning method, only cells in specified

lattices in a span space are visited in the isosurfacing

process.

5.3 Experimental Results of Isosurfacing Processes

Next, we compare the efficiency of isosurfacing processes.

In the experiments, a series of 20 isosurfaces were generated

for each volume, with various scalar values. Table 4 shows

the sizes of isosurfaces generated from the five datasets. In

Table 4,

. Ni denotes the number of isosurface cells of the
20 isosurfaces.

. Nc denotes the number of triangular polygons in
20 isosurfaces.

. Nv denotes the number of vertices in 20 isosurfaces.

We confirmed that Nc, Nc, and Nv are the same in all five

implementations and that our new method therefore

generates isosurfaces properly.
Table 5 shows the computation times for the isosurfacing

processes of the methods. In Table 5,

. Tss denotes the total time for the isosurfacing process
of the sweeping simplices method.
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Fig. 16. Image of volume thinning process (1).

Fig. 17. Image of volume thinning process (2).

Fig. 18. Image of volume thinning process (3).

Fig. 19. Image of volume thinning process (4).



. Tlc denotes the total time for the isosurfacing process
of the lattice classification method.

. Teg denotes the total time for the isosurfacing process
of the extrema graph method.

. Tvt0 denotes the total time for the isosurfacing
process of the volume thinning method without
lattice classification.

. Tvt�lc denotes the total time for the isosurfacing
process of the volume thinning method with lattice
classification.

This result shows that the computation times of our two
methods were especially small. It also shows that we
succeeded in reducing the computation times of the volume
thinning method by the combination with the lattice
classification method.

Table 6 shows the cost of checking if the cells in seed sets
are isosurface cells or not. In Table 6,

. Tss denotes the time spent searching for isosurface
cells in the sorted cell lists in the sweeping simplices
method.

. Tlc denotes the time spent searching for isosurface
cells in the classified cell lists in the lattice
classification method.

. Teg denotes the time spent searching for isosurface
cells in an extrema graph and boundary cell lists and
traversing adjacent intersected cells in the extrema
graph method.

. Tvt0 denotes the time spent searching for isosurface
cells in a skeleton and traversing adjacent intersected
cells in the volume thinning method without lattice
classification.

. Tvt�lc denotes the time spent searching for isosurface
cells in a skeleton and traversing adjacent intersected
cells in the volume thinning method with lattice
classification.

This result shows that the cost of searching for isosurface

cells is small in all five implementations because the

computation times in Table 6 are much smaller than those

in Table 5.
Fig. 21 shows the relationship between the number of

isosurface cells Ni and the above computation times, Tss, Tlc,

Teg, Tvt0, and Tvt�lc. This result shows that the computation

times for searching for isosurface cells are very slight in our

two methods, the extrema graph and the volume thinning

methods. It also shows that we archived to reduce the

computation time in the volume thinning method by the

combination with the lattice classification method.
Finally, we compare our volume thinning method and

extrema graph method in terms of the numbers of visited

cells. Table 7 shows the numbers of visited cells. In Table 7,

. 20Nc denotes 20 times the value of Nc, as shown in
Table 4. It corresponds to the number of visited cells
without any fast isosurfacing algorithms.

. Ni denotes the number of isosurface cells of the 20
isosurfaces, as shown in Table 4.

. Neg denotes the number of cells visited in the
extrema graph method.

. Nvt0 denotes the number of cells visited in the volume
thinning method without lattice classification.
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TABLE 2
Computation Times in the Preprocessing Stages

Fig. 20. Computation times in the preprocessing.

TABLE 3
Number of Registered Cells

TABLE 4
Size of Isosurfaces



. Nvt�lc denotes the number of cells visited in the
volume thinning method with lattice classification.

These results show that our two methods skip most of
nonisosurface cells because the number of visited cells in
these methods are very close to the number of isosurface
cells.

Here, the results seem to indicate that the extrema graph
method is sometimes more efficient than the volume
thinning method; however, the comparison of Neg and
Nvt0 is not always appropriate. In the extrema graph
method, many arcs of a graph are skipped since each arc
has the minimum and maximum values of the nodes of
registered cells and they are compared with a given
isovalue. Neg does not denote the sum of the number of
seed cells and isosurface cells because many cells registered
in skipped arcs are not visited. On the other hand, Nvt0 does
denote the sum of the number of seed cells and isosurface
cells. We do not think that range-based search methods,
such as the lattice classification method, make the extrema
graph method more efficient since many cells are already
skipped without using these methods. We think that the
combination of the volume thinning method and the range-
based search method is a better solution for developing fast
isosurface algorithms.

6 CONCLUSION

This paper proposed a fast isosurfacing technique that skips
most of the nonisosurface cells and does not require more
than O�n� computation time for preprocessing. The techni-
que generates an extrema skeleton by the volume thinning
method during the preprocessing. The extrema skeleton
consists of cells that connect all extremum points, and
preserves the topology of the through-holes of a volume.

The technique extracts isosurface cells from the extrema
skeleton and then generates an isosurface by the propaga-
tion method, while it skips most of the nonisosurface cells.
The experimental results given in this paper showed the
efficiency of our technique.

As a topic for future work, we are thinking of using the
extrema skeleton not only for isosurface generation but also
for other purposes, such as the analysis of scalar topology.

Additional examples of the animation of the volume
thinning process can be found at http://ciel.me.cmu.edu/
itot/mytopics/isosurf.html.

APPENDIX

A. Computation Time of the Extrema Graph Method

The preprocessing of the extrema graph method consists of
three parts: sorting cells on the boundary, extracting
extremum points, and connecting extremum points. The
cost of sorting cells on the boundary is estimated as
O�n2=3 logn2=3� since the number of cells on a boundary of
a volume is proportional to the area of the boundary and is
therefore estimated as O�n2=3� in typical cases. The cost of
extracting extremum points is estimated as O�n� since all
cells are visited once and the number of adjacent nodes for
each node is constant, according to an assumption
described in Section 2.2. The cost of connecting extremum
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TABLE 5
Computation Times in Isosurfacing Processes

TABLE 6
Computation Times of Searching for Intersected Cells

Fig. 21. Computation times in the isosurface processes.

TABLE 7
Numbers of Visited Cells



points is about m times the cost of generating an arc, where
m denotes the number of extremum points and the number
of arcs is roughly estimated as m. To generate arcs that
connect pairs of extremum points, the closest pairs of
extremum points are selected and the cells between each
pair are then traversed in order. The cost of sorting
extremum points according to the distance from a selected
extremum point is O�m logm�. This process is used for
coupling close extremum points to connect them by arcs of
a graph. The cost of traversing cells between a pair of
extremum points is proportional to the number of the
traversed cells and is therefore estimated as O�n1=3� in
typical cases since the number of the traversed cells is
proportional to the length of a segment connecting the two
extremum points. The two processes are repeated about
m times and, thus, the total cost of generating a graph
is estimated as O�m2 logm� n1=3m�. In many cases, this
is not expensive since m is much smaller than n. The
total cost of the preprocessing is therefore estimated as
O�n2=3 logn2=3� �O�n� �O�m2 logm� n1=3m�.

The isosurfacing process of the extrema graph method
consists of three parts: searching for isosurface cells in the
extrema graph, searching for isosurface cells on the
boundary, and propagating an isosurface. The number of
cells in an arc is estimated as O�n1=3� and the total number
of cells in a set of arcs is therefore regarded as O�n1=3m�.
The number of boundary cells is estimated as O�n2=3� in
typical cases since the number of cells on a boundary of a
volume is proportional to the area of the boundary. The cost
of the isosurfacing process of the extrema graph method is
therefore estimated as O�n2=3 � n1=3m� k�, where k is the
number of isosurface cells.

B. Image Thinning Method

Image thinning [23] is a technique for generating skeletal
features of an image. Essentially, the thinning is used for
analyzing and recognizing the features of figures in the
image-processing field. It visits pixels that touch the
boundary of a painted area and eliminates many of them
if features of the painted area, such as holes or projections,
can be contained without the visited pixels. This process is
repeated until no pixels are eliminated and, finally, a one-
pixel-wide painted area, called a skeleton, is generated. An
example of the conditions for determining a visited pixel's
elimination is as follows:

1. If all the adjacent painted pixels (at most eight
pixels) of the visited pixel p that share a vertex or an
edge with p cannot be visited by traversing the
adjacent pixels through their shared edges in order,
then p should not be eliminated.

2. If the visited pixel p has only one adjacent painted
pixel that shares an edge, p cannot be eliminated
because it is on a projection of the painted area.

As shown in Fig. 11a, p is the current pixel and its
adjacent pixels are numbered from 1 to 8. The black pixels
in Fig. 11b, Fig. 11c, Fig. 11d, Fig. 11e are the remaining
painted pixels. In Fig. 11b and Fig. 11c, p can be eliminated
since all the adjacent painted pixels can be traversed
through their shared edges in order (7, 8, 1 in Fig. 11b,
and 4, 5, 6, 7, 8 in Fig. 11c) and p has more than one adjacent

pixel that shares an edge. On the other hand, p cannot be

eliminated in Fig. 11d and Fig. 11e. Fig. 11f shows that the

painted area may be disjoint when visited cells in Fig. 11d

or Fig. 11e are eliminated.
Fig. 11h shows an example of a skeleton generated by the

thinning method, using the image shown in Fig. 11g. The

skeleton contains topological features such as the genus of

the painted area, and the thinning method is therefore used

to understand the geometry of the images.
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